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Abstract

Indirect Supervised Learning of
Strategic Generation Logic

Pablo Ariel Duboue

The Strategic Component in a Natural Language GeneratiorGjNystem is
responsible for determining content and structure of theegeed output. It takes a
knowledge base and communicative goals as input and padiecument plams out-
put. The Strategic Generation process is normally diviaged iwo subtasks: Content
Selection and Document Structuring. An implementationtli@r Strategic Component
uses Content Selection rules to select the relevant kno&ladd Document Structuring
schemata to guide the construction of teeument planThis implementation is better
suited for descriptive texts with a strong topical struetand little intentional content.
In such domains, special communicative knowledge is reduio structure the text, a
type of knowledge referred as Domain Communicative Knowdediherefore, the task
of building such rules and schemata is normally recognizetightly coupled with the
semantics and idiosyncrasies of each particular domaithisrthesis, | investigate the
automatic acquisition of Content Selection rules and theraatic construction of Doc-
ument Structuring schemata from an aligned Text-Knowletlypus. These corpora
are a collection of human-produced texts together with tiewtedge data a generation
system is expected to use to construct texts that fulfill Braes communicative goals
as the human texts. They are increasingly popular in legrfon NLG because they
are readily available and do not require expensive handlilagpe To facilitate learning
| further focus on domains where texts are also abundantdhans (pieces of infor-
mation directly copied from the input knowledge base). o such domains, medical
reports and biographical descriptions, | have found alighext-Knowledge corpus for
my learning task. While aligned Text-Knowledge corpora atatively easy to find, they
only provide indirect information about the selected or taci status of each piece of
knowledge and their relative placement. My methods, tleegfinvolve Indirect Su-
pervised Learning (ISL), as my solution to this problem, lson common to other
learning from Text-Knowledge corpora problems in NLG. ISAshiwo steps; in the first
step, the Text-Knowledge corpus is transformed into a éatas supervised learning, in
the form ofmatched textsin the second step, supervised learning machinery acquires



the CS rules and schemata from this dataset. My main coritibigtto define empirical
metrics over rulesets or schemata based on the trainingialat€hese metrics enable

learning Strategic Generation logic from positive exarapaly (where each example
contains indirect evidence for the task).
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Chapter 1

Introduction

In a standard generation pipeline, any non-trivial mutdential/multi-paragraph gener-
ator will require a complex 8RATEGIC COMPONENT,! responsible for the distribution
of information among the different paragraphs, bulletstsliand other textual elements.
Information-rich inputs require drastic filtering, resndf in a small amount of the avail-
able data being conveyed in the output. Moreover, buildirgjrategic component is
normally tightly coupled with the semantics and this deeod the idiosyncrasies of
each particular domain.

Traditionally, Strategic Generation is divided into twdotasks: @WNTENT SE-
LECTION, i.e., choosing the right bits of information to include iretfinal output, and
DOCUMENT STRUCTURING, i.e., organizing the data in some sensible way. The over-
all goals of Strategic Generation are to produce text that ihe same timeoherent
(marked by an orderly, logical, and aesthetically consigtelation of parts; this measure
relates to the structuring subtaskpncise(expressing much in few words; this measure
arguably relates to both subtasks, and it is not always aregant) andappropriate
(meant or adapted for an occasion or use; this measures étetiee selection subtask).

Figure 1.1, an example of the strategic generation taskwstibe two main
elements of input to a generation system: the input knovdeagse (a set of facts,
e.g.,ex- spouse( person-1, person-2)) and the communicative goal (e.§Who
is Sean Connery? or “Convince the Hearer that Sean loves Michelir.” The two
example text excerpts differ at the content level (as oppdsalifferences at the word
level, for example). Both of the aforementioned subtask&@ftrategic component can

LAlso known as content planner, e.g., (McKeown, 1985), mataaner, e.g., (Vander Linden, 1995)
or text structurer, e.g., (Moore and Paris, 1988); in RAG8h({ et al., 2000) nomenclature, it includes
the Conceptual, Rhetoricalnd, to a certain exterfocumentrepresentation levels.

2INFORM(per son- 1).

3CoNVINCE(H, | oves( per son-1, person-3)).



be seen in this example. The first text is not only wronglyctrred, but also contains
facts that are irrelevant for the given communicative geaj.(eye- col or ) while failing

to mention important ones (e.@¢cupati on). In contrast, the second text presents a
much more felicitous selection of content, in addition tiking the facts in a reasonable
and natural way.

The example also illustrates some related concepts in theegic generation
literature. For instance, there isrhetorical relation of CAUSE between the facts
awar d( per son- 1, oscar - 1) andwor k( per son- 1, bond- 1) . Thecue phrase“be-
cause”makes this relation explicit. The output of the Content Selacstep is theele-
vant knowledge poolthat in the example does not contaiye- col or . Thedocument
planis a sequence ohessagesyhere each message is the instantiation dfetorical
predicate using the input knowledge as arguments. In the example;, o- per son(..)
is a predicate with arguments r st - nane, | ast - nane, occupat i on.* On the other
hand,i ntr o- per son( per son-1) is a message —verbalized ‘&@ean Connery is an
actor and a producer”

The difficulty of the strategic generation task resides enfttt that, without prior
knowledge, any ordering in a subset of the input is a possibiment plan Since
the planner can select any numlkeof facts between 1 and (in ('ﬁ‘) ways) and then
reorder each such setkhways, there arg_, (nf—'k), possible plans. This large number
of possibilities makes for a very challenging task, thatdse® be approximated with
strong domain heuristics.

These domain heuristics depend on the type of the target t&ftparticular im-
portance to this dissertation are texts that exhibit a fixactgire that can be explained
by tracking the evolution of discourse in a field over timet, ¢an not be explained with
the information the text contains nor with domain knowledgelf. That is the case, for
example, in discourse reporting or summarizing factualrmiation. In such cases, the
extra knowledge required to structure documents in thesede has been namé&xb-
main Communicative Knowledgeor DCK (Kittredge, Korelsky, and Rambow, 1991).
In the medical domain, therefore, we can distinguish donailependent knowledge
(e.g., people have diseases that can be treated with syrgergain specific knowledge
(e.g., a surgery patient needs to be anesthetized), from CK, (n medical reports
about bypass surgeries, the anesthestetics informataridcshtart the description of the
surgery, right after the description of the patient). Itlisac that DCK helps reduce the
large number of orderings that can be expectqutiori to a manageable set of feasible
possibilities.

Even though there are general tools and techniques to ditedwiace realization

4Abbreviated nt r o- per son( per son) in the figure.



Communicative Goal:

Who is Sean Connery? INFORM(per son- 1)

Knowledge Base:
name-first(person-1, ‘Sean)
occupati on( person- 1, c-actor)
ex- spouse( person-1, person-2)
nane- first(person-2, ‘Diane’)
occupati on( per son- 2, c-actress)
name- | ast ( per son- 4, ‘Roquebrune)
occupati on( per son- 4, c-painter)
nane- first(person-3, ‘Jason)

name- | ast ( per son- 1, ‘Connery)
occupati on( person- 1, c-producer)
spouse( person-1, person-4)

nane- | ast (person-2, ‘Cilento’)
nane-first (person-4, ‘Micheline’)
rel ati ve(person-1, c-son, per son- 3)
rel ati ve(person-2, c-son, person- 3)
nanme- | ast (per son- 3, ‘Connery)

titl e(bond-1, ‘James Bond
title(novie-2, ‘operation warhead’
title(oscar-1,’ Gscar’)
reason(oscar-1, bond-1)

accent ( per son- 1, c-scottish)

wor k( person-1, bond- 1)

wor k( per son- 1, novi e- 2)

awar d( person-1, oscar-1)
sub-title(oscar-1, ‘Best Actor’)
eye- col or (person-1, c-green)
Compare:

¢ Diane Cilento is the mother of Jason. The movie ‘James Bond’ receiv@dear. Miche-
line Roquebrune is the wife of Sean Connery and has green eyes. Qasnary is son
of Sean Connery. Diane Cilento is ar-wifeof Sean Connery. The movie ‘James Bond’
is starred by Sean Connery.

e Sean Connery is an actor and producer. tdarried and later divorcedhe actress Diane
Cilento and they have a child, Jason. He also married Micheline Roquebeupainter.
Because he starred in the movie ‘James Bond’, he received an Osd&egbActor.

Document Plan(Message Sequence):

[ intro-person(person-1), ] [ ex-spouse(person-1, person-2),
i ntro-person(person-2), spouse(person-1, person-3),
i ntro-person(person-3), ] [ child(person-1, person-4),
i ntro-person(person-4), 1 [ novie(bond-1, person-1),
i ntro-award(oscar-1, person-1) ]

Possible Schema:

i ntro-person(self), |
(spouse(sel f, spouse),
{ chil d(spouse, sel f, child),

i ntro-person(spouse);

intro-person(child) } |

)*

(rmovi e(sel f, novi e),
{ award(novi e, sel f, award),

P

i ntro-novi e(novie);
i ntro-award(award, sel f)

Figure 1.1: An example of a content planning task. A smalMdedge base is given as
input together with a communicative goal. Two example texeepts are presented. The
realization of the atom in bold is also shown in bold in thege)lso shown: @ocument
planand a possible schema; both for the second text (discussednahis chapter).



c-actor

c-producer Diane

occupation name-first
Cilento

name-first name-last
c-actress
occupatio

relative-1

Spouse c-painter
occupatio
work
person- 4 name-first
Micheline

name-last

relative

title

James Bond

c-green Best Actor

Figure 1.2: Graph Rendering of my Knowledge Representation.

(Elhadad and Robin, 1996; Lavoie and Rambow, 1997) and senfgdanning (Shaw,
1998; Dalianis, 1999), the inherent dependency on each idomakes the Strategic
Generation problem difficult to deal with in a unified framewoMy thesis builds on
machine learning in an effort to provide such a tool to deahV@trategic Generation
in an unified framework; machine learning techniques cangoa general solution to
problems that require customization for every particulatantiation.

The work described in this thesis investigates the aut@naatjuisition of Strate-
gic Generation logié, in the form of Content Selection rules and Document Structur-
ing schemata, from an aligned Text-Knowledge corpus. A-Rexdwledge corpus is a
paired collection of human-written texts and structurddrimation (knowledge), similar
to the knowledge base the generator will use to generate adgsgfying the same prag-
matic (i.e., communicative) goals being conveyed in the &imimput text. For example,
weather reports for specific dates may be paired with weatigeliction data for each of
those dates. The construction of such corpora is normatipeadguring the knowledge
acquisition process for the building of NLG systems (ReiRopertson, and Osman,
2000). These corpora are increasingly popular in learnimg\iLG because they are
readily available and do not require expensive hand laigellHowever, they only pro-
vide indirect information about whether each piece of kremlgle should be selected or
omitted or the actual document structure. Indirect SugerviLearning (ISL) is my pro-

SHere the term ‘logic’ is used in the sense of control logicaaoperational variant of the term ‘ac-
quired knowledge.’
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posed solution to this problem. ISL has two steps; in the siegh, the Text-Knowledge
corpus is transformed intmatched textsan intermediate structure indicating where in
the text each piece of knowledge is appearing (if it appetadlla From thematched
texts a training dataset of selected/omitted classificatioel&brdocument plangan
be read out, accordingly. In the second step, Content Satecties or Document Struc-
turing schemata are learned in a supervised way, from thertgedataset constructed in
the previous step.

My thesis, therefore, receives as input tiegural datasetsfor its learning task,
in the form of text and knowledge. Such input is natural fas ttask, in the sense
that this is the same material humans will use to acquire traegjic Generation logic
themselves. This is the type of information a knowledge eegi may use, together with
other knowledge sources, to build a Strategic Generatiorpoment for a NLG system.

The rest of this chapter will address the definition of my peabin the next sec-
tion, present my research hypothesis (Section 1.2), suineray methods (Section 1.3),
enumerate my contributions (Section 1.4), and introdueedttmains (medical reports,
biographical descriptions) where this research is grodnde overview of each chapter
concludes this introduction.

1.1 Problem Definition

My problem is the learning of control logic for particularphementations of the first two
modules in a generation system. The acquired logic has t@jepriate to solve the
Strategic Generation problem in isolation and within eRggNLG systems. | describe
the integration of my technique in existing NLG systems flogtexamining my assumed
NLG architecture, and then go deeper into the internalsefdgic being sought.

1.1.1 Assumed NLG Architecture

As | am automatically acquiring the knowledge necessarytiar internal processes
inside a NLG system, the assumed architecture of the syst@&igreat importance. |
need to consider an architecture abstract enough to alleatimad range of applications
of the rules and schemata but grounded enough to be exeeutabl

| expect the input data to be provided in a frame-based kray@eepresentation
formalism. Each frame is a table of attribute-value paimscheattribute is unique, but it
is possible to have lists as values. As such, the values caithss atomic or list-based.
The atomic values | use in my work areUMERIC (either integer or float); ®BOLIC
(or unquoted string); BRING (or quoted string); and frame references (a distinguished
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symbolic value, containing the name of another frame in tamésetf. The list-based
types are lists of atomic values. Each frame has a unique aatha distinguishe@YPE
feature. This feature has a symbolic filler that can be linke@ih ontology, if provided.

Because my knowledge representation allows for cycles, cheabknowledge
representation can be seen as a directed graph: each fraepgasented as a node and
there are edges labeled with the attribute names joininglifferent nodes. Atomic
values are also represented as special nodes. From thifpetat) the knowledge base
of Figure 1.1 is just a factual rendering of the underlyingresentation. The actual
knowledge base would be as shown in Figure 1.2.

Figure 1.3 shows my assumed two-stage NLG architectureSiragegic Compo-
nent is divided into the two modules | am learning. The figuse &ighlights the interac-
tion between Strategic Generation and both aggregatioteaiwlization in the Tactical
Component, as they pose challenges to my learning system.addregation module
will take a list of aggregation chunks (each containing a benof messages) and pro-
duce as output a list of sentences (each sentence contaimengr more messages). The
lexicalization module changes messages into words; itrapesses referring expres-
sions, lexicalization and surface realization. Therefaggregation and lexicalization
will re-order messages locally; when observing text aseswig ofdocument planghe
original ordering will be distorted. | will now discuss ConteSelection and Document
Structuring as they are the focus of this dissertation.

1.1.2 Content Selection Rules

The Content Selection module takes the full knowledge basepag and produces a
projection (a subset) as output. This module should alssidenthe communicative
goal when building the output subset. The output of the CarSefection module has
been termed theslevant knowledge pool(McKeown, 1985)viewpoints (Acker and
Porter, 1994) ogeneric structure potential (Bateman and Teich, 1995).

A possible implementation of a Content Selection module uskes to decide
whether or not to include a piece of information. This demisis based solely on the
semantics of the data (e.g., the relation of the informatmnther data in the input).
These rules take as input a node in the knowledge represengaph and execute a
predicate oniit{ : node— {T,F}).

The decision of whether to include a given piece of data isedswiely on the
given data (no text is available during generation, as timeiggion process is creating

6A STRING is a regular English phrase (e.§Gone with the wind”) while a SrmsoLic field is ei-
ther a reference to another frame (em.ace- of - st udy- 22) or a value linked to an ontology (e.g.,
c-tv-or-radio-anchor).



Strategic
Content Selection | Component

y

Document Structuring

""""""" ' Tactical
Component

Figure 1.3: Assumed NLG architecture. The Strategic Compidisedivided into two
models, the focus for learning. | have some mild assumptarasit the Tactical Com-
ponent, but they are not a requirement for my techniques L€kiealization component
subsumes a Surface Realization component, together witkiedl€hooser and Refer-
ring Expression generator.



(person name-first) (- - -). 'SELECT-ALL
Always say the first name of the person being described.

(person eye-col or): (false, -, -). :SELECT-NONE
Never say the eye color of the person being described.

(person award title): (valuee {“Oscar” ,“Golden Globe™}, -,-).
Only mention the name of an award if it is whether a Golden &loban

Oscar.

(person work title): (-(-title -reason title),valuec {“Oscar” }).
Only mention the title of a movie if the movie received an Oscaa

Golden Globe.

Figure 1.4: Example Content Selection rules.

the output text). The current node and all surrounding information are ugefdiecide
whether or not to include a piece of data. For example, todgesihether or not to
include the name of a movie, whether the movie was the reasbimdb an award (and
the award itself) may be of use. Such a situation can be askehtegith the rules defined
below.

While | experimented with a number of rule languages, | wikchiée here the
tri-partite rule language, a solution that exhibits the right degredropbcity and ex-
pressive power to capture my training material in the bipgreal profiles domain. Other
domains may require a more complex rule language but, irtipeac¢he tri-partite rules
are quite expressive and very amenable for learning.

Tri-partite rules select a given node given constraintshanrtode itself and a
second node, at the end of a path rooted on the current nodethé-@onstraints on
nodes, | have used two particular type of constraints: wdreth not the value of the
node belongs to a particular set (exaluec {“Oscar” ,“Golden Globe"}) or a special
(TRUE) constraint that always selects the item for inclusion @hsence of any rule
that selects a node is equivalent toALBE rule). Again, more complex constraints are
possible, but these types of constraints are easily lelng®ome example rules are
detailed in Figure 1.4.

1.1.3 Document Structuring Schemata

A schema is a particular solution to the Document Structutask, a task that takes as
input a subset of the knowledge base (the relevant knowledg8 and returns a se-

"This is obviously a simplification as pragmatics and the usedel will also play a role.



pr edi cat e Education

vari abl es
per son . Cc-person
educati on-event : c-education-event

properties
educati on- event = person. educati on
out put

pred education
predhy person
pred; education-event —t eachi ng- agent
predb education-event —subject-matter
start educati on-event —dat e-start
end educati on-event —dat e-end
place education-event —pl ace
reason educati on-event —reason

time
mods

Figure 1.5: Example of a communicative predicate in the faiphical descriptions
domain. This predicate uses a person and an education emsmned such that
the education event is among the person’s education evediscdti on-event

= person. educati on). The generated output accesses fields in the edu-
cation event to fill the output frame, e.g., the subject mmatbeing studied
(educati on- event —ssubj ect - matt er).

guence of messagesdacument plap These messages are produced by communicative
predicates (Figure 1.5) composed of three items: variaplegperties and output. Each
variable has a type, which further constrains the possiadlges it can take. The actual
number and nature of these predicates varies from domaimnb@aith. A predicate can be
considered as a function that takes a number of defined (apdenandefined) variables
and searches the knowledge representation for values ahtiefined variables that sat-
isfy the constraints inside the predicate. If none are fqnd the provided variables do
not satisfy the constraints), the predicate cannot bentistad. For each set of valifes
that satisfy its constraints, the predicate produceessagd€Figure 1.6), a data structure
assembled using the variable assignment found during drelseThe messages are the
nexus between the schema and the rest of the NLG system. Acatedherefore, can
be thought of in this context as a blueprint for making messag

Given a set of predicates, a schema (shown in Chapter 5, Fig8)yes a finite

8The predicate returns only one message, if several setsiabl@assignments satisfy the constraints,
they will be iterated upon invocations of the predicate mwitee iteration process is finished —the set of
variable assignments is exhausted— the predicate faitstarntiate.
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pred education
predhy person-32
pred; " Col unbia University"
pred, "Conputer Science"
. start "1999/8/27"
time . .
mods end "2005/1/17
place "New York, NY"

Figure 1.6: Example of an instantiated predicate (messafj@dse messages are later
grouped by the aggregation component and verbalized bexealization component.

state machine over the language of predicates with varigiences. At each step
during schema instantiation, a current node is kept anchalptredicates in the edges
departing from the current node are instantiated. A focushraeism will then select the
next node (and add the message todbeument plan The instantiation process finishes
when no new predicate can be instantiated departing fronsuhrent node. While the
schema itself is simple (an automaton with predicate anvig names on its edges),
the instantiation process presents some complexitiestdsiingly, my schema induction
algorithm is independent of the instantiation processsoniernal details. However, this
complexity forbids using existing learning techniquesfiaite state machines to learn
the schemata.

Schemata are explained in detail in Chapter 2 (McKeown'sirmaigdefinition,
Section 2.2.1) and Chapter 5 (my schemata implementatiatio8e.1).

1.2 Research Hypothesis

My research hypothesis is three-fold. First, | share McKe@¥983)’s original research
hypothesis that the text structure is usually differentrfrthe knowledge structur®.|
refer to the structure of the knowledgedsmain orderingssuch as time or space. This
type of information controls some of the placement of infation in the text, e.g., news
articles about a certain event enumerate some events ¢bgicadly (Barzilay, Elhadad,
and McKeown, 2001). However, these orderings cannot bectxga priori for every
domain and, in general, text structure is not governed bynthe

Second, as this dissertation focuses on learning schemgtaain hypothesis is
centered on the feasibility of automatically constructsapemata from indirect obser-

9That is, the need for Domain Communicative Knowledge.
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vations, using shallow methods. Indirect observationerref learning schemata from
positive examples, contained in a Text-Knowledge corptimavke this corpussteadof
a fully supervised training material (in the formadcument plansr sequences of pred-
icates). Text has a linear structure, defined by the factibads come one after another.
Even though exact word placement is misleading (as it interaith aggregation and
lexicalization), | can match text and knowledge and migthtetext linear structure to
the knowledge. In that sense, my hypothesis implies thdkoshéext analysis methods
can be used to acquire Domain Communicative Knowledge (cti®@e2.2, Chapter 2)
for schema construction. That is, to gain information altbatdomain behavior in gen-
eral, via Indirect Supervised Learning as described in @ section. This level of
analysis lets me gain information about the behavior of tain in general, but not
necessarily solve an understanding task for each pantitaia

Finally, part of my research hypothesis is that schemataise&ul as a learning
representation. Their simplicity, a fact that has beenczéd in the literature (Zock,
1986; Hovy, 1993), make them a prime candidate for learnmMgreover, the fact they
are learnable should shed more light on their empirical ngyee (already highlighted
by the number of deployed NLG systems employing them (P&8i87; Maybury, 1988;
Bateman and Teich, 1995; Lester and Porter, 1997; Milos&g|j@999))10

1.3 Methods

The input to my learning system is thus knowledge and text. th® task of learning
Strategic Generation logic, this is a supervised setting¢arning system is presented
with the input to Strategic Generation (knowledge) and teat is determined from the
output of the strategic generation component (relevanivieage andlocument plans
As the text is not the output of the Strategic Generation comept, but something that
can be derivedrom the output of the strategic component, my solution to thabfam
is Indirect Supervised Learning, which | explain at lengtiCihapter 3, Section 3.2.

As mentioned in Section 1.1, the output of the Strategic Geiman component
is defined as follows: the relevant knowledge pool is a subséte knowledge base,
which | assume is a frame-based knowledge representatibie.ddcument plans a
sequence of messages (rhetorical predicates instanfratedthe relevant knowledge
pool), segmented into paragraphs and aggregatiort’sets.

To obtain the relevant knowledge pool and tihecument planl build without
human intervention an intermediate structure,rittegched texthy using assumptions on

19This hypothesis was only partially validated, see the ktidins chapter (Chapter 8).
111 did not address this segmentation problem in this thesis.
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how knowledge can be verbalized within the text. Thesgched textare built without
any examples of actuahatched textgunsupervised learning). For example, the first
sentence of the biography in Figure 1.1 will produce theofeihg matched texf when
matched against the knowledge base shown in the figure:

name-first(person-1,’ Sean’) nane-| ast(person-1,’ Connery’) isan
occupati on(person-1, c-actor) and aoccupati on( person-1, c- producer)

With thematched texin hand, it is easy to see which knowledge has been selected
for inclusion in the text: any piece of knowledge matched ttext segment is thus
assumed to be selected by the human author for inclusioreite#t. Having now a task
(Content Selection) with training input (KB) and output (KRiplselection labels) pairs,
this comprises a well defined learning problem, where Coretection rules can be
learned.

Continuing with the example, let’'s suppose we have two biolges:

e Sean Connery is an actor and a producer. He received an Osc&dst Actor for
his acting in the movie ‘James Bond'.

e Sean Connery is an actor and a producer. He married and lateorded the
actress Diane Cilento with whom he had a child, Jason. He alsoiathMicheline
Roquebrune, a painter.

The first biography is Ausiness-stylbiography, while the second one iaanily-
style biography. For each style, theatched texprovides labels for each fact in the
knowledge base. These labels (selected or omitted) arenshowigure 1.7 for the
business-stylbiography.

To choose among the different possible rulesets (e.gsetdé; and rulesetz,),
| look at the information retrieval task of retrieving thé#s (selected, omitted) for each
piece of knowledge in the input knowledge base. Hiemeasure from information
retrieval (van Rijsbergen, 1979) of this retrieval task carubed as a likelihood for each
ruleset. The supervised learning step becomes searchitigefouleset that maximizes
this likelihood. Therefore, if th& *-measure of the labels obtained by applyigigto the
training set is greater than tie'-measure of applyingz,, then%1 should be preferred
over%s.

12This is a different representation of theatched textas used thorough this thesis. Here the chunk of
text matched is replaced with the knowledge representatatiched against it. This representation is used
here just to illustrate my methods.
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sel nane-first(person-1,’ Sean’')

sel name-1ast(person-1,’' Connery’)

sel occupation(person-1,c-actor)

sel occupation(person-1, c-producer)
—sel ex-spouse(person-1, person-2)
—sel spouse(person-1, person-4)
—-sel nane-first(person-2,’ Diane’)
—sel nane-|ast(person-2, "Cilento’)
—sel occupation(person-2, c-actress)
—-sel nane-first(person-4,”Mcheline’)
—sel nane-| ast (person-4,’ Roquebrune)
—sel occupation(person-4, c-painter)
—sel relative(person-1,c-son, person-3)
—sel relative(person-2,c-son, person-3)
—sel nane-first(person-3,’Jason’)
—sel nane-| ast (person-3,’ Connery’)

sel wor k(person-1, bond-1)

sel title(bond-1,’" James Bond')

sel award(person-1, oscar-1)

sel title(oscar-1, Gscar’)

sel sub-title(oscar-1,' Best Actor’)

sel reason(oscar-1, bond-1)
—sel eye-col or (person-1, c-green)
—sel accent(person-1,c-british)

Figure 1.7: A knowledge base showing items that should ket §el) or should be
omitted (-sel). Selected items are also marked in bold, for emphasis. Wrestizicting
amatched texthese items are linked to bracketed segments inside th&hexbrackets
resembling named entity tags).
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Thematched texalso provides input and output for learning schemata: thatin
to a schemata-based strategic component is the relevamidage pool, extracted in
the previous Content Selection step. The output of the schiérdocument plancan
not directly be extracted from thmatched textbut the sequence of matched pieces of
knowledge can approximate the messages.

That is, the sequence of pieces of knowledge (facts) exidor thematched text
of the biography shown in Figure 1.1 will read as follows:

[ nanme-first(person-1) nane-I|ast(person-1) occupation(person-1)
occupation(person-1) ] [ ex-spouse(person-1) nane-first(person-2)
nane- | ast (person-2,) occupation(person-2) relative(person-2)
nanme-first(person-3) ] [ spouse(person-1) nane-first(person-4)
nane- | ast (person-4) occupation(person-4) ] [ work(person-1)
title(bond-1) reason(oscar-1) award(person-1) title(oscar-1)
sub-title(oscar-1) ]

Compare this to thdocument plarshown in Figure 1.1. Asocument planare
at the predicate level, | mine patterns over the placememitahic pieces of knowl-
edge in the knowledge sequence extracted from the text ¢irexample above, | find
that(nane-first, name-| ast, occupati on) is a recurring pattern), mine order con-
straints over them and use the constraints to evaluate @igygof document planfrom
possible schemata. Finally, to compare sequences of afoedes of knowledge to
predicates, | defined a dynamic programming-based mexjtamed in Chapter 5, Sec-
tion 5.4.2.

Given a set of relevant knowledge podbeument plarpairs, | define the likeli-
hood of a schema by summing up three terms:

e F* of the associated knowledge retrieval task (on-line enhselection): disre-
garding the ordering, see which percentage of the rightinébion appears in the
output.

e Number of order constraints the output of the schema satisfreeasures local
ordering.

e Alignment distance between the output of the schema andathettsequence of
atomic values: measures global ordering.

As with Content Selection, defining means to tell good scharfratn bad ones
renders the learning problem an optimization one.
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1.3.1 Technical Approach

On technical grounds, Figure 1.8 shows a generalized grapimodel® for my system.
There, my observed input (knowledge base) and output (@e&tinarked in black. The
mapping | am interested in learning is “knowledge base” &evant knowledge pool”
and “relevant knowledge pool” tdocument plan

Indirect Supervised Learning involves an unsupervisep, dtased on assump-
tions on the structure of the model, to elucidate the hid@eiables and supervised steps
to generalize from the constructed mapplfigThe assumptions on the model | use are
related to the ways knowledge can appear on the text. Mofgadly, | see the knowl-
edge as a collection of atomic items (the concepts), and tfreetext as a collection of
phrases. The relation between phrases and concepts ishyivererbalization function
2 from concepts to sets of phrases (possible verbalizatiofis¢ model | use for the
unsupervised part is summarized by the following two tegk&reHy is the null hypoth-
esis,p andc are particular phrases and concep#s,is the set of phrases that make a
particular text# is the set of concepts that make a particular knowledge septation
(where% and & refer to the same entity) and is the verbalization dictionary:

Ho : P(pe ZIce®€)=po=P(pe &) if p¢ 2(c)
Hi: P(pe Zce¥)=p1>p=P(pe?) if pec Z(c)

Here,Hp says that if a given phrageis not a verbalization of a given conceptthen
knowing thatc holds will not change the chances pfappearing in the text. On the
contrary,H; says that ig is a verbalization foc, knowing thatc holds makes it much
more likely for p to appear in the text.

Supervised Learning. As the experiments in Chapter 3 will attest, timatched text
construction process is able to identify in an automatibitastraining material with an
F*-measure as high as 0.70 and as low as 0.53. These resulfdimaplearning using the
matched textas training material will require a robust machine learmmgthodology. |
will now mention some features common to the superviseaiegmlgorithms presented
in Chapter 4 and Chapter 5. Both Content Selection rules and Deru8tructuring
schemata are symbolic and highly structured in nature. th bases, | have input and
output pairs(l,0) to learn them, extracted from theatched text | am interested in
finding the objecto* (belonging to the set of all possible Content Selection roles

13The arcs are not stochastic.

14The overall process is an instance of supervised learningerefibre the name, ‘indirestupervised
learning.” However, no examples of the hidden variable amglable to the learner and the mapping
between the training data and the hidden variable is n@iatriThis mapping is done in an unsupervised
fashion, per the model described here.
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Knowledge
Content
Relevant Selection
Knowledge
Text
Structuring
Document Aggregation &
Plan Lexicalization
Text /

Figure 1.8: Learning Architecture.

Document Structuring schemata, in either case) suchahataximizes the posterior
probability given the training material:

0" = argmaxP(o|l,0)
[0}

Here, instead of computing the probabil®yo|l,0), | use the input/output pairs
to compute for each putative objezta likelihood f(o,1,0). This likelihood will also
allow me to compare among the differen&nd it is thus a quality function in the repre-
sentation space. In both cases, | use a similarly definedifume@mploy the rules or the
schemata to generate from the inpwt set of output®’. The sought quality function
becomes the distance between the training output and tliiped output||O — O'||,
for suitable distances.

Given the quality function, finding implies a search process on the large space
of representations. Several algorithms can be of use hgrgAg, hill-climbing or sim-
ulated annealing). However, given the highly structurethirgaof my representations,
| have found it valuable to define a successor instance cofmimg two instances in
the search pool, instead of one. This type of approach is krasvGenetic Algorithms
(GAs). In general, | consider GAs as a meaningful way to perfeymbolic learning
with statistical methods.

System Architecture. The process described above is sketched in Figure 1.9, t&ng
thresholds and paramet&tsiescribed in Table 1.1. The Text and Knowledge corpus is

15gee Chapter 8, Section 8.1, for further details on theseneas.
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fed into amatched textonstruction process, described in Chapter 3. This proc#iss w
employ the model with a minimum score on the t-valués: ] for concepts that appear
in at leasthrsyppdocuments. Once some matches have been identified, a digaatibn
process usingv words around each match will be spanned.

From thematched texta Content Selection dataset will be used to learn Content
Selection rules (presented in Chapter 4). This process igm@zhabout a GA with a
population ofpopulationjze This initial population is built using a bread-first search
until depthde pthin the knowledge graph. The fitness function will weight ps&m and
recall using a weight odr.

Also from thematched textsequences of semantic labels are extracted and used
to learn Order Constraints (Chapter 5). For this process, patierns that appear in
a supportthresholdsequences are further considered. The mined constramtsndy
considered if their associated probability is abtwe.

Finally, the Content Selection dataset, the Order Cons$;aetjuences of atomic
values extracted from thmatched texand rhetorical predicates are all used to learn
schemata (Chapter 5). A population mxbpulatioriizz)eis used to learn schemata with a
maximum ofny variables per type.

1.4 Contributions

This thesis puts forward contributions at three levels. stfit contributes by devising,
implementing and testing a system for the automatic cocttru of training material for
learning Content Selection and Document Structuring loBie technique described in
Chapter 3 is able to process hundreds of text and knowledge goadl produce Content
Selection training material with quality as high as 74% @iea and 67% recall. The
Document Structuring material (orderings) it producedss &ighly correlated to hand
annotated material. Thimatched textsonstruction process emphasizes the use of struc-
tured knowledge as a replacement for manual tagging. TheKieswledge corpus in
the biographies domain assembled as part of this thesisugmaluable resource, avail-
able for further research in the area, together with the imaci to obtain new training
material in a number of domains discussed in Chapter 9. THeai@ methodology
employed in this thesis is also a contribution: using a nunabduman written texts
for evaluation, dividing them into training and test set arsthg the test set to evaluate
both the unsupervised as well as the supervised steps. Alteenapproaches will re-
quire larger amounts of human-annotated data or will Idlag@hsupervised part without
proper evaluation.

Second, among my contributions are also the proposal auly stutechniques
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Threshold | Description | Value
Chapter 3
thry t-test cut-point 9.9
thragq Percentage (_)f _the ava_lilable_number of matches to ruspoy,
the on-line dictionary induction.
Number of top scoring matches to add in each s,tedaoo
thriop (computed as a percentage of the total number /o
matches).
w Disambiguation window, in words. 3
thrsupp Concept support, in percentage of the total number afoos
instances.
Chapter 4

populationze

tent Selection rules.

Size of the population in the genetic search for Cont000

depth Depth cut-off for the breath-first search building the g
population for the rule search.
a F-measure weighting. 2.0
! Saturation area of thelDL sigmoid function. 0.99
Chapter 5
Minimum number of sequences a pattern shquld
support threshold Match to be further considered (this threshold is |ex3goy
pressed as percentage of the total number of| se-
guences).
throe Probability threshold for a given order constraint{top .98
be further considered.
My Number of variables per type. 2
windowsize 8

How many items are used to build a pattern.

relative distance

Clustering parameter when mining order constraints. 0.1

threshold
probaplllty Minimum probability for accepting a learned con-(0.99
cut-point straint.

Table 1.1: Thresholds and Parameters used in this Thesis.
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to learn Content Selection logic from a training materialsisting of structured knowl-
edge and selection labels. As the training material is aatwally obtained, it contains
a high degree of noise. Here, my contribution includes tegles that are robust enough
to learn in spite of this noise. | set the problem as a rulenogttion of theF *-measure
over the training material. My techniques have elucidatext@u Selection rules in four
different styles in the biographies domain. Moreover, mperknents in Content Se-
lection contribute to our understanding of the Content Siglegohenomenon at several
levels. First, it separates nicely the need for off-lingythlevel) Content Selection from
on-line Content Selection, where the approach describdusrthesis could potentially
be used to learn Content Selection logidath levels!® From a broader perspective,
my acquired Content Selection rules provide an empiricatimédr interestingnessf
given facts.

Finally, | defined the problem of learning Document Struictgrschemata from
indirect observations, proposing, implementing and eatatg two different, yet simi-
lar techniques in two different domains. The Document $tmircg problem is one of
the most complex problems in NLG. My techniques are amonditbeefforts to ef-
fectively learn Document Structuring solutions autonatc At a fine grained level of
detail, my main contribution is a dynamic-programming neettnat compares sequences
of values (that can be read out from text) to sequences ofagesgthat are produced
by the schemata). The acquired schemata are written in ardége formalism, another
contribution of this thesis. Previous implementations a@fiegnata had mixed declara-
tive/procedural definitions that impose a high burden forlaarning technique.

1.5 Domains

| discuss now my experimental domains (Medical Reports anddheDescriptions).
These domains were central to research projects | have bheelwad with. Other po-
tential domains are discussed in Section 9.3, includingdgl Financial Markets, Ge-
ographic Information Systems, and Role Playing Games.

1.5.1 Medical Domain: MAGIC

MAGIC (Dalal et al., 1996; McKeown et al., 2000) is a systensigeed to produce a
briefing of patient status after the patient undergoes anamyobypass operation. Cur-
rently, when a patient is brought to the intensive care u@it)j after surgery, one of the
residents who was present in the operating room gives angié&dithe ICU nurses and

1] did not conduct experiments targeting the validation @ thaim.
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Input Knowledge MAGIC output

(patient-info-12865, c-patient, (a-age,

age-12865), (a-nane, name-12865), (a-gender, . .
gender - 12865), (a-procedure, procedure-12865), \]Ohn Doe IS a 58 year'OId male patlent
(a-birth-date, ...), ...) i i i -
(age- 12865, c-neasurenent, (a-value, 58), Of I_Dr' ﬁmlth unrd]ergcgggkrrltral Valve :je h
(a-unit, "year")) all. IS weight Is lHograms an 1S
(gender - 12865, c-nul e) p . g . g .

(ht-12865, c-nmeasurenent, (a-value, 175), height 175 centimeters. Drips in protocal
o ase e Mo ati rst-nane, " John"). concentrations include Dobutamine, Nitro-
(a-last-nane, "Doe")) glycerine and Levophed. He received 1000
(procedure-12865, c-procedure, (a-value, .

"mitral valve replacement")) mg of Vancomycm and...

Figure 1.10: MAGIC domain example (the data excerpt mapkeadighlighted text).

residents. The generation system uses data collected fremachine in the operating
room to generate such a presentation, avoiding distraataagegiver at a time when they
are critically needed for patient care.

Figure 1.10 shows an example of a data excerpt (a data fileiauthssic for-
malism with 127 facts on average) and presentation. Sewéthle resident briefings
were collected and annotated for a past evaluation. Eanhdrigtion was subsequently
annotated with semantic tags as shown in Figure 6.2, on pgage 1

1.5.2 Person Descriptions: AQUAINT Q&A

As part of the Question Answering proje&UAINT) taking place jointly at Columbia
University and University of Colorado, | have developerlO&GENIE, a system that gen-
erates biographic descriptions of persons, taking as imgatmation gathered from
the WWW. The biographical descriptions domain is central,tdms$ available larger
amounts of data compared to the medical domain. Becausesofidita availability, |
only pursued Content Selection experiments in this domain.

For these experiments, fact-sheet pages and other sedalata sources provide
the input knowledge base (Duboue and McKeown, 2003b). Tkis tae the biogra-
phies written by professional writers or volunteers, dejieg on the corpus. Figure 1.11
exemplifies an aligned pair.

This domain is very rich, allowing me to gather multiple hiaghies for each
person | have independently obtained knowledge. Such qaligined corpus had also
proven useful for mining verbalization templates (Barzidend Lee, 2002).
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Input Knowledge Human-written Text
fact (person42, nanme, ' Sean Connery').
fact (person42, birthnane,’ Thonas Sean Connery’).

factfperson;t)z,birrhdate. mont h(* August "), day(* 25')} Actor, born Thomas Connery on Augus
year (' 1930')).

—

fact (per sond2, bi rt hpl ace, * Edi nbur gh, 25, 1930, in Fountainbridge, Edinburgh,
Scotland’). R _
fact (person42, education,’ Dropped out of school SCOtIandrlEIheson ;f a tFZUCkNdrI.\llerband (.:hal'
at age 13'). .

fact (person42, fam |y, Mt her, name(’ Euphani a ivg?:ganConener?/Sdr(;gtpee(;, OU?I(;f STQOE at
Connery’)). . d
fact (persond2, fam |y, Brother,name(’Neil’)). . [y e

fact(person42, fam |y, Son, nane(’ Jason Joseph age fl:rteen to ]Oln the B”tI?h Navy Con'
Connery”)). o, ; nery is best known for his portrayal o
fact (person42, occupation, "actor"). L. L.

fact (person42, occupation, "director”). the suave, sophlstlcated British Spy, James
fact (person42, occupation, "nodel"). .

fact (person42, occupation, "producer"). Bond7 In the 1960s. ...

Figure 1.11: Biographies domain example (the data excerpsteethe highlighted text).

1.6 Structure of this Dissertation
This dissertation is divided into the following chapters.

Chapter 2. Relation between this thesis and previous research. Tharobs@ Strategic
Generation is quite vast, so the focus of the chapter is iumient structuring
via schemata (although key RST-based papers are also digyusther learning
approaches in NLG are also discussed.

Chapter 3. Learning approach, focusing on the unsupervised part. dhstauction of
the matched textss the focus of this chapter. It presents the foundationdarn-
ing Content Selection rules and Document Structuring sclteenits experimental
results are in the biographical profiles generation.

Chapter 4. Supervised learning of Content Selection rules. This inetud discus-
sion of the rules themselves and different methods to aeqoem automatically.
Meaningful baselines for comparison are also discussealsdt contains experi-
mental results in the biographies domain.

Chapter 5. Supervised learning of Document Structuring schemata.v declarative,
version of McKeown (1985) schemata is introduced and itsraatic construc-
tion through an adaptation of existing methods to learndisiate machines is
presented.

Chapter 6. Preliminary Document Structuring experiments performeaniedical do-
main. They show the feasibility of the technique in a difféardomain.
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Chapter 7. Document Structuring experiments in biographical proféeeyation.

Chapter 8. Limitations of the approach. A succinct description of sdimatations |
have identified throughout the thesis.

Chapter 9. Conclusions and some possible extensions.
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Chapter 2

Related Work

In this chapter, | discuss related work in Strategic Gemanatnd learning in NLG. These
topics are very broad; | have decided to focus on a small nurmbaighly relevant
papers. | first analyze related work in Content Selectiont{@e&.1), in particular, the
work on the ILEX (Cox, O’'Donnell, and Oberlander, 1999; O’'Detl et al., 2001) and
STOP (Reiter et al., 1997) projects. Afterwards, | introdtleee Document Structuring
task together with schemata and RST, its two most widespreadnaent structuring
solutions. | then relate my work to other recent learningmr$fin NLG in Section 2.3.
To conclude this chapter, | present related work in a numbassorted areas, including
the relation between the strategic component and other le®dd the NLG pipeline,
planning diverse media, summarization and biography geioer.

2.1 Related Work in Content Selection

Content Selection, the task of choosing the right infornmatio communicate in the
output of a NLG system, has been argued to be the most impdatsk from a user’s
standpoint; users may tolerate errors in wording, as lortgasformation being sought
is present in the text (Sripada et al., 2001). This task hiéerent levels of complexity,
with solutions requiring a full inferential engine in canaases (Zukerman, Korb, and
McConarchy, 1996).

I will present here one of the most recent Content Selectigorghms in the
literature, developed as part of the ILEX project and corapiaio my two level Content
Selection approach. In Section 2.1.2, | will summarize th@¥edge acquisition process
that the researchers in the STOP project pursued to buildGloatent Selection module.
| will also compare that human acquisition with my the auttedaone described in
Chapter 4. Some remarks regarding integrated or separatadr€&election close this
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section.

2.1.1 ILEX Content Selection Algorithm

One of the most well-regarded integrated Content Selectgorithms proposed in the
literature is the one used in the ILEX project (Cox, O’'Donnalhd Oberlander, 1999;
O’Donnell et al., 2001), a generation system that providegsadhic labels for exhibits
in a Web-based museum gallery. ILEX tries to improve curstatic (fully pre-written)
Web pages by means of Dynamic Hypertext (Dale et al., 1998) narriage of NLG
and hypertext systems. In Dynamic Hypertext, a generatibrpnoduce not only text
that lives in the nodes of a hyper-linked environment, bab dhe links between these
nodes.

In the ILEX Content Selection algorithm, each tuple comingnira relational
database is transformed into abject definition where each of the entries in the object
must be declared ingredicate definition (Figure 2.1). These definitions contain, among
other things, a simplified user model composed of three itemasrest (how appealing
is this fact to the user, statigmportance (contribution of the fact for an overall task,
also static) anassimilation (level of acquaintance to the fact, dynamically updated).
These numbers are hardwired in the predicate definition.

Their algorithm computes aelevant knowledge poakith an innovative rele-
vancy metric. They follow the same line of work presented lgKiglown (1985) Content
Selection (pages 113-121, “Selection of relevant knowd&gdghat is, to take the object
being described and the entities directly reachable irCivetent Potentigla graph with
objects as nodes. ILEX also collects all entities relevarthe entity being described,
with an innovative spreading-activation relevancy metmchis metric, the relevancy of
an object is given by the mathematical combination of thicstaportance of the object
and the relevancy of the object in the path to the object be@sgribed. Their relevance
calculation allows them to prioritize the tapmost salient items, while maintaining co-
herence. Different links preserve relevance in differeaysv ILEX authors assigned for
each class of links hand-picked relevancy multipliers.

The ILEX Content Selection algorithm is complementary to mpraach. For
instance, my algorithm could be used to provide ILEXerest scores, an appealing
topic for further work.

2.1.2 STOP Content Selection Knowledge Acquisition

Reiter et al. (1997)'s work addresses the rarely studiedl@nolof knowledge acqui-
sition for Content Selection in generation. Knowledge asijon is used for STOP, a
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(def - predi cate Designer
Argl jewel lery
:Arg2 person
cinportance ((expert 10) (default 1) (child 3))
interest ((expert 10) (default 6) (child 6))
cassimlation ((expert O (default O (child O)
assimrate ((expert 1) (default 1) (child 1))

cexpression ( :verb design-verb :tense past :voice
passi ve)
:conparison ( :variation (string 1) :scal e nomnal))

Figure 2.1: Definition of an ILEX predicate, (O’'Donnell et,&001), page 11.

NLG system that generates letters encouraging people posstoking. STOP’s input
is a questionnaire, filled out by a smoker; STOP uses the iQuesire to produce a
personalized letter encouraging the smoker to quit. Reitat. @xplored four different
knowledge acquisition techniques: directly asking exp@st knowledge, creating and
analyzing a corpus, structured group discussions and #ioud sessions. | detail each
of them below.

The first technique they employed was to directly inquire domexperts for Con-
tent Selection knowledge, given that STOP was a multidis@py project with moti-
vated experts within reach of the NLG team. This techniqueveu unsuccessful, as
experts would usually provide “textbook style” responsssaflemic knowledge). Such
knowledge differs very much from their actual knowledge &ptioners.

Their next effort focused on creating a small Text-Knowkedgrpora (what they
call a conventionalcorpus). They collected 11 questionnaire-letter pairsh Watters
written by five different experts. Problems arised when canmg letters written by dif-
ferent doctors; the difference in style, length and conteake this corpus very difficult
to use.

Their final two methods were borrowed from the Knowledge Beagring litera-
ture (Buchanan and Wilkins, 1993) and proved to be very ugsfuictured group dis-
cussions and think-aloud sessions).

This research is relevant to my Content Selection work (mteskin Chapter 4)
where | propose automated mining of Content Selection rutes f1 Text-Knowledge
corpus similar to the one Reiter et al. collected. Intergdtienough, they found the
corpus approach insufficient. | find these possible expilansito their problem:
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Size of the corpus.Text production has many variables, the natural varigbdihong
normally occurring text will make 11 pairs very likely to @kge noticeably just
by chance.

Lack of a well defined task. It is possible that, in an effort to avoid biasing the corpus
collection effort, the experts were given little or no ingttions about the letter
cessation writing task. High variability in collected daaisually a signal of this
type of problem.

Lack of expertise in the task. The experts in their work were medical experts, but not
necessarily smoke cessation letters experts.

Excessive number of expertsAs 11 pairs is too small to come up with a model for a
single expert, using more experts rendered the whole tamkrmountable (as they
concluded).

These problems are not present in my biographies work (@reitha number of
domains that | have identified as suitable for applicatiomgftechnique), where | have
found hundreds of biography-knowledge pairs, written byf@ssional biographers that
have to adhere to a writing style.

2.1.3 Separated vs. Integrated Content Selection

While most classical approaches (Moore and Swartout, 199igr&and Paris, 1993)
tend to perform the Content Selection task integrated wighRbcument Structuring,
there seems to exist some momentum in the literature for deéwed Content Selection
process (Lester and Porter, 1997; Sripada et al., 2001; Bevacand Wilks, 2001). For
instance, Lester and Porter (1997) distinguish two levet®ootent determinatioriocal
content determination is thselection of relatively small knowledge structures, eath o
which will be used to generate one or two sentencghjle global content determination
is “the process of deciding which of these structures to inciade explanation.”Global
content determination makes use of the concepie/points introduced by Acker and
Porter (1994), which allow the generation process to be sdraedetached from the
knowledge base (KB). My Content Selection rules, then, carhbeght of as picking
the global Content Selection items.

In the same vein, Bontcheva and Wilks (2001) use a Contentt®elesdgorithm
that operates at early stages of the generation proceswiradl for further refinement
down the pipeline. They present it as an example of techsitpuevercome the identified
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problems in pipelined architectures for generation (thay this arecursive pipeline
architecture similar to Reiter (2000)).

Most recently, the interest in automatic, bottom-up conpdgmners has put forth
a simplified view where the information entirely selected before the document struc-
turing process begins (Marcu, 1997; Karamanis and Manyr20@2; Dimitromanolaki
and Androutsopoulos, 2003). While this approach is lesslexit has important rami-
fications for machine learning, as the resulting algorittam be made simpler and more
amenable to learning. Nevertheless, two-level Contentc8Betecan provide a broad
restriction of the information to consider, with more finaiged, hand-built algorithms
applied later on to select information in context or withgémrestrictions.

My work is in the schema tradition, with a two level Contentesgion. The first,
global level is performed with Content Selection rules aredgbcond level is within the
Document Structuring schema.

2.2 Document Structuring

| will now address some generalities to the Document Strugiyroblem; namely, its
output and overall algorithms employed, before introdgcchemata and RST-based
planners, the two most widely deployed solutions.

The output of the Document Structuring islacument plannormally a tree or
a sequence of messages. The relations between these nsessaghy are rhetorical
in nature and employed later on to divide the discourse mttugl units, such as para-
graphs or bulleted lists (Bouayad-Agha, Power, and Sco@Qpand sentences (Shaw,
2001; Cheng and Mellish, 2000). Most systems use treds@asment planghe RAGS
consensus architecture (Cabhill et al., 2000) definestiet or i c representation level
as a tree. Sequences, on the other hand, are more resthatetr¢es, but for several
applications present enough expressive power. Exampbbsde the works of Huang
(1994) and Mellish et al. (1998). Sequences are importaninfpwork as schemata,
as defined originally by McKeown (1985), use sequencetaament plangvhen em-
ployed without schemata recursion). Moreover, even ifsfegve more momentum as
document plangn the literature, several incompatibility results (MarcZarlson, and
Watanabe, 2000; Bouayad-Agha, Power, and Scott, 2000), ugaest otherwise. The
use of trees seem forced in some cases, for example Mann amapBbn (1988) claim
that the rhetorical structure ought to be a treeniost of the textddowever, their INT
rhetorical relation seems to be just ad hocprocedure to keep a tree from becoming
a forest (Rambow, 1999). Finally, Danlos, Gaiffe, and Roueg2001) analyze cases
where trees are not expressive enough. Their solution isnfday equational systems
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(actually directed acyclic graphs or DAGS) that increaggressivity by reusing rhetori-
cal nodes.

The algorithm normally involves a search on the space ofiplesdocument
plans That is the case of Schemata-based, RST-based or opptcytesners, which
| discuss later in this section. However, several Documénic&iring problems in the
literature have been solved with no search, as in a good numhbbasesplanningis just
a label for a stage solved by other means, as pointed out by ®arfi®99). Complex
planning process examples include Huang (1994), workingudomatic verbalization
of the output of theorem provers and Ansari and Hirst (1998yking on generating
instructional texts. In general, full planning is the mostnprehensive solution to the
document structuring problem, although it is expensive reigdires modeling complex
issues such as the intentional status of both hearer ankespaad the full consequences
of all actions that may not be necessary (or even feasible)l idomains of interest to
NLG practitioners.

Another question being asked by previous research is tleetdin of the build-
ing of the plan. Normally, speed and ease of understandirityates building top-down
planners, e.g., Young and Moore (1994), which uses the Longhl planner (Young,
1996). However, other authors, for example Marcu (1998 tke whole planning pro-
cess as a linking among facts by means of input-given RSTiwalg an approach that
is indeed bottom-up (I discuss opportunistic planners ictiSe 2.2.2). A hybrid ap-
proach is taken by Huang (1994), which combines a top-dovaned) approach with
a bottom-up opportunistic perspective based on centering.

Several other approaches have been investigated. Besedgsitoaches | discuss
later in this section, Power (2000) poses the problem as atr@nt satisfaction and
uses CSP techniques (Jaffar and Lassez, 1986) to solve itit &nal. (1997) make a
stand for the use of defeasible rules as a tool for plannifgi@nt and concise texts.
Wolz (1990) models the problems by having different Al-g@ompete with each other
to come out with a final decision (another mechanism for d&@%#). In my work, |
learned schemata from data (a bottom-up approach), whersctiemata are a type of
planner that involves a local search during instantiattop-down skeleton planners, as
discussed by Lim (1992)).

Traditionally, Strategic Generation problems have beeires$ed in NLG by
means of two techniques: Al planners and Schemata. Reasoamgerive the text
structure in some cases. In a scenario (Figure 2.2) borrénwedthe work of Rambow
(1999), a reasoning proce'ssan derive the text shown in the figure, using, for example,

1Such as!l say Sl to accomplish(3) but in virtue of(4), | want to say 8 because it will accomplish
it by means of5),” and so on.
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operators derived from rhetorical relations (Section2).2Reasoning-based Strategic
Generation focuses on domains where the structure canlpeléduced from the input
data and the intentions of the speaker.

Not all text can be fully deduced from the input; some text figsd structure
coming from the domain. Even though | consider Al-style emtplanning a useful and
interesting approach, many cases require special domaivl&dge. For instance, if |
know that an actor won three Oscars, was married twice an8é ige&rs old, common
knowledge about biographies would dictate starting a laiplgy with the age and occu-
pation, leaving the rest of the information for later. Notintrinsic to age or awards
specifies this ordering (it is not part of the domain knowkedgelf). The text structure
in formulaic domains presents very little intentional stire and is historically moti-
vated; while its current form has logically evolved overéinthere is no rationale behind
it that can be used for planning. What is needed in such donmoiemain knowledge
related to its communicative aspects: Domain Communicdtimwledge (DCK). DCK
has been defined by Kittredge, Korelsky, and Rambow (1991) as:

(...) the means of relating domain knowledge to all aspectedial com-

munication, including communicative goals and functio@KDis necessar-
ily domain dependent. However, it is not the same as domaiwlkdge; it

is not needed to reason about the domain, it is needed to camate about
the domain.

This knowledge can be explicitly or implicitly representieda strategic component,
depending on the judgement of the authors and on its impmetéor the scenario at
hand. In most cases it is left implicitly represented. A btgsexception is the work of
Huang (1994), which defines the notion of proof communieasigt (PCAS).

What is happening behind the scenes is that three differemttstes can be
mapped to the discourse: informative, intentional and $oclin certain domains, one
structure dominates the production of texts and a formaliased on only one of them
can be enough to structure the text. Rambow (1999) proposesegmated approach to
deal with DCK and other issues.

With respect to intention, Moore and Paris (1993) (also H(\888)) present a
discussion of how to represent the beliefs ofltearer and the intentions of thBpeaker
in instructional dialogs. Also, thdegreeof belief may be important to model as in
the works of Zukerman, Korb, and McConarchy (1996), Walked BRambow (1994)
and Rambow (1999). However, other approaches, e.g., MoateéPars (1993) and
Young and Moore (1994), prefer to consider belief as a birjagfieve or disbelieve)
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1. 1 know my interlocutor will believe "John overslept again'
in Sam’s word. )
2. I know Sam saw John without shavt . S1 o
ing. He didn’t shave\, Sam saw/h|m
N '

3. |l want to convince my interlocutor
that John overslept.

4. | know my interlocutor will not be- evidence
lieve me directly.

. S1
5. 1 know my interlocutor knows that m
a man doesn’t shave when he overf

sleeps. S2 S3

S2 S3

Figure 2.2: Example scenario and rhetorical tree.

datum. In my work, | do not represent nor use intentionalcstme, beyond the B
PORT(FACT) type of intention, as part of simplifying assumptions tokeé&trategic
Generation amenable for learning. An interesting area dturé work is to incorpo-
rate intentional data coming from text by using current aesie in opinion identification
(Zhou, Burgoon, and Twitchell, 2003; Yu and Hatzivassilag/®003). The matched text
can be enriched with opinion and opinion polarity labels hpatomatic opinion/polarity
tagger. My system can then use this extra information torthe@ontent Selection rules
that take into account the agent’s stance toward certais {f#tat information will need
to be modelled outside of the learning system, using ti@usdi cognitive modelling).

I will turn now to schemata-based document structuring.

2.2.1 Schemata-based Document Structuring

In this section, | present McKeown'’s original schematanttiscuss KNIGHT, MAGIC
and other schema-like systems. McKeown’s schemata arengaesnwith terminals in
a language ofhetorical predicates, discussed below. The four schemata identified by
McKeown in her work are thattributive, (Figure 2.3)dentification, constituency,and
compare and contrastschemata. The schemata accept recursion, as some ergries in
the schema definition can be fulfilled directly with predesabr by other schemata. They
are not fully recursive as only four schemata are proposedizre are 23 predicates,
although McKeown expressed her belief that the formalismbEpossibly extended to
full recursion.

Her predicates are important for my work as they contain anwgerational part,
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Attributive Schema

Attributive

{Amplification; Restriction

Particular-illustration*

{Representativie

{Question; Problem; Answer { Comparison; Contrast; Adversative
Amplification/Explanation/Inference/Comparison

Figure 2.3: An example McKeown original schema. The braceamroptionality, the
slash separates alternatives, plus and star have thelrarsigor zero) or more repetition
meanings and the semicolon indicates propositions thaiotdre clearly assigned to one
predicate or another.

the search for associated knowledge. When the schema reachetorical predicate
such asttribute, it fills it with required arguments, e.g., the entity theiatite belongs
to. From there, the rhetorical predicate (actually a pieficeisp code) will perform a
search on the relevant knowledge pool for all possibleattess to the given entity. These
instantiated predicatesngssagem this dissertation) will be available for the schema-
instantiation mechanism to choose (by virtue of her focushmgism, explained below)
and then build thelocument plan.

Schemata are then structure and predicates. My work fodoskesrning the
structure but not the predicates (I basically learn only pathe schemata, in a sense).
Which predicates to use and how to define them is an importanoptne schema that |
thus assume to be part of the input to my learning system. i$flaoint of divergence
with McKeown’s schemata that used predicates rhetoricabture. My predicates are
domain dependent, what makes creating these predicatexasprworth automating.
As a step in that direction, | have been able to provide a datble version of these
predicates in a constraint satisfaction formalism (disedsn Chapter 5, Section 5.1).

To implement the schemata, McKeown employed Augmentedsitran Net-
works (ATNSs) an extensible declarative formalism where safher requirements used
these extensions. In her system, the rhetorical predieaitesxecuted when traversing
different arcs. Both the actions in the arcs and the conditeme arbitrary pieces of
Lisp code. An example ATN (Figure 2.4) shows a fair degreeasspbilities at each
node (seen by the number of arcs leaving each state). Ongbtian from McKeown’s
work is to use focus to guide the local decision of which artdgerse at each moment.
| will discuss her focus mechanism now.
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fill particular-illustratior

n
fill classification

ATTRIATTR amp ATTR/AMP fill attributive ATTRIPICAT

ATTR/ = ATTR/ANAL i

Figure 2.4: McKeown'’s Attributive Schema (ATN).

Focus

McKeown (1985) contains a full chapter (“Focusing in Disks®)’ pages 55—-81) describ-
ing the importance of centering theory and proposing a ratgiv solution for discourse
planning. She built on the works of both Grosz (global foarg) Sidner (local focus) to
extend their interpretation theories with decision hdiassfor generation. McKeown'’s
work on focus is a major ingredient of her schemata and hasdudegpted for use in other
generation systems (e.g., Paris (1987)’s TAILOR generaktowever, fewschema-like
planners mentioned in the literature include this piecdefdchema. | find that a major
oversight of later followers of McKeown'’s work.

As pointed out by Kibble and Power (1999), research on facusderstanding is
interested in discourse comprehension, mostly solvingsatanaphora, e.g., pronom-
inalization. Most centering theories, therefore, provioles to cut down the candidate
search space for anaphora resolution. Nevertheless, ttexag®n case is different, as
these theories lack insights of how to choose among the sanafidates. Understanding
does not require these decisions, as they have been takbka byrnan author in the text
already. McKeown complemented centering theories wittrigges suitable for gener-
ation. For recent work on centering, Karamanis (2003) prssa learning approach to
the problem.

McKeown presents heuristics for two decision problemsliing focus. In the
first problem, the system has to decide between continuiagkspg about the current
focus or switching to an entity in the previous potentialusdist. Her heuristic in that
case is to switch, otherwise the speaker will have to redhice the element of the poten-
tial focus list at a later point. The next decision arisesmutieciding whether to continue
talking about the current focus or switching back to an itarthe focus stack. Here her
heuristic was to stick to the current focus, to avoid falsplioation of a finished topic.

This is,grosso modpMcKeown'’s treatment of focus. The details are more com-
plex but I will skip them as | use McKeown’s focus mechanisnthaut any modifi-
cations. Her focus mechanism is important because my madbarning mechanism
interacts with it and has to learn schemata in spite of theshébcus system.
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KNIGHT Explanation Design Packages

Lester and Porter (1997) were interested in robust exptamaystems for complex phe-
nomena. When designing their Document Structuring modhés;, tocused on two is-
sues,expressivenesgthe Document Structuring module should be able to perfasm i
duties), andiscourse-Knowledge EngineerindDCK requires expertise to be acquired
and represented, see Section 2.2, they were particuldadgested in providing tools to
support this vision). This last issue arise after workingmmon-declarative Explanation
Planning module for a period of time. As the module grew lgrgdding new function-
ality or understanding existing ones became an issue astii@ $gic was buried under
lines and lines of Lisp code.

To solve this problem, Lester and Porter took the most datilar pieces of their
approach and moved it to the knowledge representationraysteating the Explanation
Design Packages (EDP). EDPs are trees represented as fraalesowledge represen-
tation. The frames encapsulate a good deal of Lisp code,inigfiocal variables, con-
ditions over local and global variables, invoking KB acagssand arbitrary functions.
They are as rich as a programming language.

When compared to schemata, it seems that Lester and Poiter arra simi-
lar solution coming from the opposite direction. McKeowrapzed a number of texts
and background work in rhetorical predicates to hypotlees&r schemata as a suitable
representation of discourse that she later operatiomhilizeng ATNs. As ATNs are of
a hybrid declarative/procedural nature, extensions caooded in by means of extra
Lisp code. Her schemata required using some of these eatensvickeown, therefore,
arrived at a hybrid declarative/procedural implementastarting from a fully declar-
ative problem. Lester and Porter, on the other hand, stavidda fully procedural
implementation and further structured and simplified itiltthey arrived to their hybrid
declarative/procedural EDPs.

True to their roots, EDPs have a more procedural flavor, lattdbes not avoid
making a direct comparison with schemata. The frames in E@Relate roughly to
schemata’s states. Note, however, that there are no cyclbe DPs (as they are trees).
The loops in the schemata are represented in EDP by anateraBchanism. More inter-
estingly, the KB accessor functions behave operationafigity the same as McKeown’s
predicates. The major difference (and this may be the reabgr_ester and Porter did
not draw this parallelism) is that McKeown stressed tinetorical nature of her predi-
cates. KNIGHT predicates are not rhetorical, but domaireddpnt; this is an approach
| follow in my work as well. Finally, both approaches allonwgling a sizeable amount
of extra Lisp code into their formalisms. EDPs provide mdeees to do so, while the
ATNSs concentrated this in the arc transitions.
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A key distinction is that, while schemata are skeleton-péaa because they con-
tain the skeleton of a plan but they perform a local searcivgdrby McKeown'’s fo-
cus mechanism) to arrive to the final plan (Lim, 1992), EDR& lany type of search.
Lester and Porter did not mention this fact on their work dnsl¢lear they did not need
such a mechanism for their robust generation approach.

EDPs expand schemata by providing a hierarchical orgaoizaf the text that
is suitable for multi-paragraph texts. Moreover, they i@ a prioritization model
that makes for a bare-bones user model (but does not compaieher the TAILOR
(Paris, 1987) or ILEX (O’Donnell et al., 2001) treatment bétissue) and a number
of well-defined non-rhetorical predicates for natural tdi and processes. However,
Lester and Porter followed a more procedural extension @stthemata, which makes
them unsuitable for my learning approach.

Other Schema-like Planners

MAGIC. MAGIC took the topic tree approach of Lester and Porter antpkfied it
until it became fully declarative, with a high toll on its eegsive power. Its schema
is a tree with topic internal nodes and predicate-leaves ifiternal nodes constitute
the text organization and structure the output into two Ik chunking (paragraph
chunks that contain aggregation chunks). The predicatgtefetch from the knowledge
base all the values matching the predicate and insert thatirgs messages into the
output. This is the only iteration process in the MAGIC planBy being encapsulated
into the leaves, it spares the need of cycles as in TEXT catibes and local variable
definitions as in KNIGHT. The MAGIC planner is so simple thiisi surprising that it
works. A closer look may reveal MAGIC’s secret: the repetitat-the-leaves approach
produces highly cohesive lists of related facts, realizethe form of enumerations,
with the rest of the information shuffled around inside thgragation chunks by the
MAGIC complex aggregation component, one of the foci of thagrt. Interestingly
enough, this representation was very amenable to my leatachniques (Chapter 5).
The representation, however, seems only suitable for pigreingle-topic discourse (all
discourse in MAGIC has the same focus —the patient the sywgas about).

Other schemata implementations. Plenty of other people used schemata, including
the work in the TAILOR generator (Paris, 1987) that expamttemata with user model
and trace-explanation systems, the work done by MayburggLthat attempts to add
more rhetorical predicates, the work in the KOMET projecttéBaan and Teich, 1995)
that expands schemata for text and graphics, and the woheiéba-Il system, that
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name-1

| hypotension | (hypotension—l)

drugend-1 drugend-2

end-of-case

| surgerylen | Csurgerylen-l}

Figure 2.5: An example of MAGIC’s schemata-like Documenu8turing trees (left,
straight edges nodes) and output (right, rounded nodes).e Dbcument Struc-
turing tree is instantiated for the four semantic uniis (gend- 1, drugend- 2,
hypot ensi on- 1, name-1, surgeryl en-1). The resultingdocument plarhas four
leafs, five internal nodes and eight edges (shown in bold).

applies schemata to dynamic multimedia and comparisorisgiiljevic, 1999). | detail
my own declarative implementation of schemata in Chapter 5.

2.2.2 RST-based planning

Continuing with the idea already present in McKeown'’s worlcohsolidating and im-
proving rhetorical relations defined previously in therbtieire, Mann and Thompson
(1988) studied a number of texts in different genres andestgnd formulated their
Rhetorical Structure Theory (RST). RST states that every tagtehunique rhetorical
structure based on text spans where rhetorical relatiolts Adhey add to the rhetori-
cal treatment of McKeown two key ingredients: hierarchy asgmmetry. Now a text
span can be subdivided into sub-relations and a superaelesin hold over it. Schema
recursion is supposed to capture this fact but McKeown didm@stigate schema re-
cursion much herself. Hierarchy is not the only key ingratiedded to the picture by
Mann and Thompson, as they also realize that a number (altipsif the rhetorical
relations they identified in texts weasymmetrical, in the sense that they contained two
text spans, one of which (theucleug was central to the discussion and could not be
removed, while the second span (8&ellite) expands or complements the nucleus.
From their analysis, they propose 23 rhetorical relatiaingded into two cate-



37

gories, presentational and informational. The distinct'omade depending on whether
they hold in the text by virtue of the text flow (presentatihroa by virtue of the under-
lining truth of the given facts (informational). For exaraph relation such asJ3TIFY
will only hold depending on what has been said before and wieatvant to say now
(that is, it depends on the information selected and howplased on the text, in the
intention of the speaker), while a relation such asi¥TIONAL CAUSE holds statically
between two facts in the knowledge base.

RST is a theory designed to capture the structure of texts mergé without
particular ties to understanding or generation. Relativéyesaiccess in understanding
(Marcu, 2000) has run into problems defining a set of rhedbrelations (Marcu and
Echihabi, 2002). Nowadays, the existence of rhetoricati@hs that hold between spans
of text is an agreed fact and research focuses on the sizess# spans and the number
and nature of the relations. Regarding the size of the spaasnnd Thompson (1988)
work at the clause level but other researchers such as 2@00) use variable sizes
from words to sentences. Regarding the number of the retatimott and Dale (1993)
provide a bottom-up perspective on the number of relatissisd, postulating that despite
the actual relations taxonomy, it should in some way be refteby the existence of
related cue phrases. Marcu and Echihabi (2002) put thisindeg@ractice, in their study
using a very large corpus. Other approaches postulateanargber of relations, which
Hovy and Maier (1995) organized in a taxonomy. Finally, ¢hsrthe issue of whether or
not the number of rhetorical relations is bounded. On thehamel, Rambow (1999) and
Knott and Dale (1993) argue in favor of bounding their numdreotherwise the theory
will become unsound. On the other hand, Mann and Thomps®Bjl&nd Hovy and
Maier (1995) sacrifice soundness on behalf of a further iegdmeory (on pragmatic
grounds).

From the generation perspective, Hovy (1988) was the firapfay it for build-
ing a strategic component (Hovy, 1993). His approach irewlkeversing the direction
of the RST relations defined by Mann and Thompson (so its obdeetfect is used
as a precondition and its applicability constraints as{gostitions) and using them as
operators in a planning process. While this approach enjbgetéd success, it has a
number of drawbacks. Some problems between this plannipgaph and intentional
structure have been discussed at length by Moore and Pll&&R) (e.g., how inten-
tional structure will be lost if only rhetorical structure kept as the output of the plan-
ner, complicating follow-up reasoning over the generagst) t but more relevant to my
dissertation are the operational issues involved in a RS&dbplanner. Building a RST-
based planner requires modelling carefully the intentiohboth the speaker and the
hearer (cognitive modelling), a problem in purely informatdomains, where the only
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intentional structure that can be associated with the gettteé simple RPORT(FACTS).
Moreover, purely informative domains are prime candidébesising NLG techniques
and therefore of practical importance. As pointed out by [(if892), a RST-planner
requires additional guidance to be able to plan reasonaklért reasonable amounts of
time. In that direction, my work can be adapted to acquiredibimain-based information
from a Text-Knowledge corpus.

Opportunistic Planning

Another avenue to incorporate rhetorical relations wheanping purely informative
texts is to rely solely on informative relations, precaédadl on the semantic input (con-
sidered, therefore as an integrated part of the knowledgesentation) and then search
for atext thatis able to incorporate as many of the rhetbrétations as possible (Marcu,
1997), together with other text structuring operators (Mkelet al., 1998) and most im-
portantly, focus-based constraints (Karamanis and Margyr2002). That approach ren-
ders the document structuring an optimization processaeckeor the text structure
that maximizes an evaluation (objective) function. Instiregly enough, the techniques
employed to solve this problem involve also genetic algang (in particular, Genetic
Search (Michalewicz, 1992)). | also use genetic algoritimmay work. While Mellish
et al. (1998)’s intention was to push stochastic search assitfle method fomple-
menting a document structurer, | pursue the automediestruction of the schema itself.
My system, moreover, uses a corpus-based fitness functhole they use a rhetorically-
motivated heuristic function with hand-tuned parameters.

Considering rhetorical relations as part of the input hasthentage of avoiding
an explicit representation of the intentional state oftdearer. In such settings, a trivial
cognitive model, where every fact uttered by the speakeébeiimmediately assimilated
and believed by the hearer, can be employed. While oppotitiplsinners succeed in
incorporating rhetorical relations in their outputs, tregem to be limited to problems
lacking any real use of the communicative power of the rhegbstructure. In contrast,
most content planners, (Young and Moore, 1994) and arc¢hites (Cahill et al., 2000)
find the relations while structuring the document. By doingtkey can find relations
that hold as a result of the structurgé¢sentationalrelations). In my case, the input is
the relevant knowledge pool, a subset of the KB in the framsetd Knowledge Repre-
sentation described in Chapter 1, Section 1.1.1 and it amnte rhetorical information.
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2.3 Related Work in Learning in NLG

In recent years, there has been a surge of interest in erpiniethods applied to natural
language generation (Columbia, 2001). One of the first agpdics of machine learning
to NLG systems is a hybrid architecture trained on targdt @xample outputs) intro-
duced by Knight and Hatzivassiloglou (1995). In this aretiiire, a first component
over-generates a large number of possible solutions, aedand component chooses
among them. The first component is quite simple and the secamgonent is the one
based on machine learning. For example, a symbolic engiryegereratehis success
as an actresg&ndher success as an actrelbgt the probabilities in a corpus of related
texts will choose the second (correct) output. My systemmiexample of an alternative
architecture that is trained in input/output pairs, in tbenf of a Text and Knowledge
corpus (besides the fact that my system works in learninghf®iStrategic Generation
component and not the syntactic/realization component).

Text-Knowledge corpora, a traditional resource for knalgke acquisition in Nat-
ural Language Generation, are recently gaining momentuarasource for Statistical
NLG (Barzilay and Lee, 2002; Duboue and McKeown, 2002; Stgetchl., 2003; Barzi-
lay, Reiter, and Siskind, 2003). They have been employedefmning elements at the
strategic level (Duboue and McKeown, 2002; Duboue and MeKe@003a), for lexical
choice (Barzilay and Lee, 2002; Sripada et al., 2003) anchat devels (Barzilay, Reiter,
and Siskind, 2003; Ratnaparkhi, 2000).

Dimitromanolaki and Androutsopoulos (2003) worked alsaniachine learning
applied to Document Structuring. Their training materiahsisted of sequences of
atomic values, an ideal training set, as each atomic valigeeagtually a message and
thus the input of the document structurer was compatiblk itstoutput. In my case, in
contrast, the input are facts and the output are messagaslalssl over those facts. Be-
cause each of these sequences was rather short (about sixgee$ong), the following
approach proved fruitful: they trained a cascade of classitio decide the exact (abso-
lute) position that each pre-selected fact has to take imtitgut. It is unclear whether
their approach will apply to other (more complex) settingbsolute and relative posi-
tioning are quite similar in sequences of six elements, blbmger sequences, telling
between the two allows for a better utilization of the traghimaterial. My mining of
order constraints described in Chapter 5 is an example divelarderings.

Shaw and Hatzivassiloglou (1999) work on the probabilistidering of pre-
modifiers in complex NPs (e.dg'a 35-year-old asthmatic male patient of Dr. Smify”
a task also addressed by a number of authors (Cheng et al., Ra0dduf, 2000; Poe-
sio, Henschel, and Kibble, 1999). Because this type of andariformation is domain
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dependent, they designed an algorithm to acquire ordetreams from a corpus. This
algorithm is important for this thesis, as | have employeddaptation of it for my Doc-
ument Structuring work described in Chapter 5. Their algamistarts by collecting a
table of observed ordering behaviors. In this table, theyaaitpositioni, j indicates the
number of times in the corpus the objeatame before the objegt From the table,
they try to reject the null hypothesis thaj came in any order (equivalent to saying that
the probability ofi coming beforej is 0.5). The following formula will compute the
probability of the observed frequenrgies:

> (0 05"

wherem is the total number of tinlfléghas been seen occurring befgren the corpus
andn is total number of times and j occur in a pair. That equation can be used with
a threshold to select “likely enough” constraints or can k=g into more complex,
smoothing techniques described at length by Shaw (2001).

NITROGEN (Langkilde and Knight, 1998) is the generation componerat Jap-
anese-English machine translation system. They emplapguage modellike those
used in speech recognition (argram model, in this case a bigram model) and a sym-
bolic module that uses a grammar to transform the input sgmtation into an interme-
diate representation (a word lattice) that is scored byahguage model. The word lat-
tice has several drawbacks (Langkilde and Knight, 1998hgkdde (Langkilde, 2000)
moves away from the word lattice by replacing it with a packaest on the same un-
derlying model.

Varges and Mellish (Varges and Mellish, 2001; Varges, 2@48ploy instance-
based learning to build IGEN, a surface realizer with limigentence planning capabil-
ities, trained on input/output pairs. An interesting diffiece from NTROGEN s that the
symbolic generator uses a semantic grammar extracted feammty data (in an approach
similar to Fergus (Bangalore and Rambow, 2000)). The senismt®msen as a function
of the sum of the cosine similarity to a set of instances, &edatio of input semantic
elements covered in the output sentence, a memory-basesbapga technique already
employed in surface realization by Neumann (1997), in cptate speech by McKeown
and Pan (1999) and recently in sentence planning by Pan aad &©04)). Interest-
ingly, his training material is very close to myatched textsalthough Varges created
them by hand.

A system completely trained on input/output pairs is Amaiga trainable gener-
ation module for Machine Translation, developed at MicfbResearch (Corston-Oliver
et al., 2002).

At higher levels in the generation pipeline, SPoT (WalkemRaw, and Rogati,
2002), a trainable sentence planner, uses a ranking primeabe filtering. The ranking
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methodology is based on experiments that showed that it agisreto train the system
based on human preferences than clear cut selection. C#mndielatence plans for a
sequence of communicative goals are generated randoméy, Tie chooser component
determines which of the candidates is most suitable. Troesdr component has been
trained by having human subjects rank candidates duringrdireng phase; boosting is
used to learn discriminative re-ranking rules. This sysietrained on ranked outputs.

Barzilay and Lee (2002) work on the problem of inducing a gatien lexicon.
Such a lexicon provides words for parametric predicatetherform of templates where
the parameters from the predicate can be plugged in. As thpytuse data to be verbal-
ized and a variety of human-written verbalizations for sdata. This is a multi-aligned
Text-Knowledge corpus.

All these systems receive symbolic representations ag,iniding seamlessly
with my learned schemata (that contains symbolic reprasiens in the predicates).

2.4 Related Work in Other Areas

| will discuss work in the related areas of summarization diatbg systems.

2.4.1 Related Work in Dialog Systems

Oh and Rudnicky (2000) work on NLG for dialog systems. In sugteams‘NLG and
TTS synthesis are the only component that users will experidirectly. But with limited
development resources, NLG has traditionally been oveddddy spoken dialog system
developers” They presented an-gram based system that operates at different levels
of the NLG pipeline. As their output is very small for the NL&dlition (one or two
sentences), their work is an example of the powen-gfams when dealing with short
output. While they claim their model to be grounded on Knigd &latzivassiloglou
(1995)'s model (the model later popularized by ther RDGEN generator), they have a
major divergence from them, as their system is fully staéétand not hybrid. More
important to this dissertation, they perform limited Cont8election by defining a task
mixing Content Selection and lexical choice and solving ihvatatistics computed on
text (outputs only). Their approach is very valuable butrteienplified task only makes
sense when the mapping from concepts to words is as direct e icase of some
dialog systems. In my case, the need for a verbalizatiomodiaty makes more clear the
need for training in both input and output pairs and theretbe need for inducing such
dictionary if it is not available. At any rate, both approastare comparable. A synergy
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between them is interesting for further work, if there i€naist in applying my technique
to dialog systems.

Also working in dialog systems, Young (2002) presented arttecal fully train-
able system “built” from published trainable componentd arodels. While he does not
address any Strategic Generation isqueErsse(dialog systems have very simplified gen-
eration needs, as discussed before), he arrives at the tkanghHHatzivassiloglou (1995)
model coming from a fully statistical setting, as a corneetierm to linearize concepts
verbalized from the understanding probabilities. Thesdfments are estimated on tar-
get texts (example outputs), followingINROGEN'S example. The only reason | can
postulate for him not using input/output pairs to train timeérization component (e.qg.,
as it is done in Amalgam (Corston-Oliver et al., 2002) for auefrealization and in this
thesis for Strategic Generation), is the fact that he bagethbdel in published works,
and at that time there were few or no work done on trainabléesys on input/output
pairs.

2.4.2 Related Work in Summarization

In summarization, the two subtasks of the strategic companegeneration get mapped
to the task of selecting which sentence or clauses to indludiee output and how to
order them. For the task of selecting sentences using matdaming approaches, most
of the work on the field can be tracked back to the seminal wéikupiec, Pedersen,
and Chen (1995). There, they collected 188 summaries plusitiaal texts and aligned
summary sentences to text (semi-automatic constructidrecfummarization equivalent
of my matched tex)s From there, they computed a number of features on thenatigi
texts (similar to my computation of structural features ba semantic representation)
and used them to predict which sentences were more likelg indduded in the output.
While they were working in a text-to-text environment, bofipeoaches are compatible.
The main difference, besides the novel use of shallow kngden my work, is that
summarization works with a fixed output size as an argumettigdask while in my
generation task the output size is unconstrained, but hagwac exactly the information
selected in the target texts (that is, some biographiesagoahe paragraph, while others
contains three paragraphs, just because there are mogs thiorth telling about the
latter person; the key is not including irrelevant facts).

After the work of Kupiec and colleagues, effort has concaett on evaluation
(Van Halteren and Teufel, 2003; Nenkova and Passonnead),4@@ture consolidation
(Radev et al., 2002), improving the matching between texinsang and text source (Jing
and McKeown, 1999; Daualll and Marcu, 2004) or better theoretical frameworks (Fi-
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latova and Hatzivassiloglou, 2004). The overall relatietbween my Content Selection
work and summarization is an issue | am particularly intiexégn following up in further
work.

With respect to sentence ordering, this constitutes véihe problem in single
document summarization, where the order in which the seateappear in the docu-
ment normally constitutes a reasonable and appropriagziog] although there are some
exceptions (Jing and McKeown, 2000). The situation chamgesn confronted with a
number of sentences coming from different documents. Bayzilhadad, and McK-
eown (2002) investigated this problem of re-ordering dusbf sentences (which they
call theme} for multi-document summarization. They performed a nundfeexperi-
ments with human subjects before proposing a bottom-upritigg, based on chrono-
logical ordering and topical structure. Their first expegimhvalidated the importance
of re-ordering and found out théf reordering is not, in general, helpful, there is only
a 7% chance that doing reordering anyway would produce a rehalt is different in
quality from the original ordering.” That speaks of the importance of ordering for the
summarization task. They then compared twivaalgorithms, Chronological Ordering,
which presents each theme at the earliest of its publicatioem and Majority Ordering,
that presents each theme according to the relative posititre original texts of most
sentences (as possible). For the majority ordering, theyl@rad the greedy approx-
imation proposed by Cohen, Schapire, and Singer (1999).r Bxperiments showed
both strategies to be unsatisfactory so they went on to paréxperiments at a larger
scale to elucidate the impact of ordering according to humdges. In one experiment,
they found out that“there are many acceptable orderings given one set of seeteh
This reinforces my using population of schemata as in my GA-based algorithm in
Chapter 5, as opposed to finding the one and only best scheasdtg {or example, hill
climbing). On the other hand, from 40,320 possible ordesii5§ subjects produced only
21, speaking of a small number of acceptable solutions.

They collected a corpus of ordering preferences among sisbgd used them
to estimate a preferred ordering. They found out that theeeedertain stability on clus-
ters of objects (a phenomenon that re-inforces my use oénpattetection algorithms
to preprocess the sequences) and modeled that stabilliyavdbherence constraint that
ensures that blocks of sentences on the same topic tenduotogether. This technique
results in a bottom-up approach for ordering that oppostically groups sentences to-
gether based on content features. In contrast, my work ptgeta automatically learn
schemata for generation based on semantic types of thedlgusge, resulting in a top-
down planner for selecting and ordering content. While tlaerimg approach is also
bottom-up, the schemata learned are top-down, resultiefficient execution times.
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Kan and McKeown (2002) presented work on sentence reoglgemed in a cor-
pus annotated with semantic predicates. The main contributas to compare different
decay functions for modelling the context in an environm&here majority orderings
were built by search. My approach differs from Kan in two kepects: first, | have de-
veloped techniques to automatically annotate trainingenmedt using a Text-Knowledge
corpus. The knowledge is used to replace the human annutaffimm these, instead
of collecting statistics over the training and using thenruaitime to order the facts
(what | call the “on-line” approach), | use the corpus (sames also collecting statis-
tics) to build a schema that will order the facts at runtimeerefficiently (the “off-line”
approach). My approach, therefore, has the advantage of ssiuctured knowledge
instead of hand labelled data and of providing a more effi@ed easier to understand
document structurer.

A later approach also employed a Markov assumption for textsiring (Lap-
ata, 2003). Lapata’s system used a number of computablerésafincluding syntactic
and lexical features) to collect statistics of which seagemay follow a previous one.
Working only with the previous sentence (i.e., using a véryrsmemory in the Markov
process), a necessary constraint to obtain meaningfidtstat she obtained very promis-
ing results that speak very well of her election of featuhMg approach, in contrast, tries
to obtain a global (top-down) text structurer from a richrinag set (the Text-Knowledge
corpus). Her system, however, can be trained directly ohaled might be more inde-
pendent of particular domains.

Very recently, Barzilay and Lee (2004) proposed and evallataethod for con-
structing HMM-based content models from text. Their systemstructs topical models
of text while also constructing models of the ordering betwthese topics. Their system
has never been applied to NLG tasks, but it will require tHievierbalization of the text
to do so (as it only orders text and not concepts). In a simsilaation, Reiter (2000)
found such an approach to be very inefficient. Moreover,Heirttechnique to work in
NLG, the concepts should be verbalized in a way that is coitmlpatith the training text.
For example, if the training text safX was born on DATE’, their system may find the
word“born” as a strong marker of a topic but if the NLG system decidesrtoalze this
concept as(DATE)” then the word'born” will not appear there to signal it. Compare
this with my approach in Chapter 3 where | induce the verbtitimadictionary from a
Text-Knowledge corpus. Barzilay and Lee’s algorithm is adaghly efficient method
for sentence selection. Theirs is a method to incorpora&@disition of the sentences in
the text to be summarized as a sentence selection critaréh & approach can not be
applied easily to knowledge selection, as the knowledgestedbected (“summarized”)
appears unordered in the knowledge representation. Babid@sherent differences on
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working with or without a knowledge representation, my taqhe targets planners that
work with smaller spans of text (as small as a single wordwafor cycles and that are

very efficient planners and easy to understand by humansunimsry, they present a
new solution fully trained in unannotated text with a numbgresults for summariza-

tion. Their approach seems very appealing for NLG and ma@eareh in that direction

must prove fruitful.

2.4.3 Related Work in Assorted Areas

Requirements on the output of the strategic component. The decisions taken at the
planner level may relate issues at levels lower than theabdincument plans Two
items worth mentioning in this regard are the location iaside generation pipeline
where theconnectivege.g., cue phrases likbut’ or ‘however) should be defined and
whether or not the particularities in the realization ofegivphrases (active/passive, to-
inf/gerund) should be synchronized with rhetorical dexisi Dealing with instructional
text, Vander Linden (1992) provides a very detailed analg$ithe issues concerning
the election of syntactical forms given a communicativetesn The authors identify
different factors, including pragmatic, semantic and us&ated constraints, that affect
this choice. For example, for theaGSE relation, the order between nucleus and satellite
depends upon whether the consequence is intended or not. dRafh®99) introduces

a framework that allows the content planner to synthesizisabms at different levels
of abstractions. Bouayad-Agha, Power, and Scott (2000yaaglossible incompatibil-
ities between the text structure (i.e., paragraphs andossgtand the rhetorical struc-
ture. With respect to sentence planning, Shaw (2001) eggketstrategic component
to provide adocument plasegmented into aggregation chunks. Information insidé eac
aggregation chunk can be reshuffled by his aggregation coempo

Related Work in Artificial Intelligence.  The Al Planning community (Minton, 1993)
focuses its learning efforts in acquiring information takdws speeding up the control of
the planner, e.g., ordering between the rules to speed ygahaer or to arrive greedily
to a good local solution. My techniques also provide as dusgaleton planners with

very efficient runtime. Also within Al, Muslea (1997) pressm Genetic Programming
(Koza, 1994) based planner. The plans being learned areatdivg with the state of

the art in Al planning, with impressive running times.

Multimedia/Multilingual/Layout. ~ When planning different type of content, textual
and non-textual information can be planned together. Tisdrgerest in reusing the re-
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sults of the planning process across content types, asadtaphe economics of the gen-
eration process. In particular, the layout affects the compative process, and differ-
ent languages affect the structuring of the message. Dales&¢ljevic, and Oberlander
(1997) try to approach the building of interactive websuéth an NLG dialog perspec-
tive, with mixed results. Kamps et al. (2001) provide a vasynprehensive study of the
relation between graphical disposition of textual and textual elements on the page,
and show that it is possible to plan layout and content attege Stent (2000) adapts
RST to model dialogs. Marcu, Carlson, and Watanabe (2000) shaosgative result on
the sharing of rhetorical trees between English and Japar@ser multilingual gener-
ation papers include the work ofdRner and Stede (1992). Bouayad-Agha, Power, and
Scott (2000) show another incompatibility result, now besw rhetorical structure and
text structure. Andr and Rist (1995) present schema-like coordinated text aaphgrs
system.

With respect to Dynamic Hypertext, O’'Donnell et al. (200d)wee that their prob-
lem of prioritization , history awareness limited output andlimited planning made
schemata unsuitable for their task. That is true when cenisig schemata as originally
defined by McKeown (1983), but certain aspects of their gwbivould have benefited
from a schemata-based planner. They seem to imply that anscisea completely fixed
interaction, while ignoring the focus-based decoding pssc Their Content Selection
algorithm can be used to provideaelevant knowledge poe@ind then a schemata could
have been written, rich in choices that would have follows@agh using focus to pro-
duce coherent texts.

Related Work in Biography Generation. Part of the research described in this thesis
has been done for the automatic construction of the Contdatt8sm and Document
Structuring modules of ROGENIE (Duboue, McKeown, and Hatzivassiloglou, 2003),
a biography generator. Biography generation has the adyestef being a constrained
domain amenable to current generation approaches, while aame time offering more
possibilities than many constrained domains, given theeyaof styles that biographies
exhibit, as well as the possibility for ultimately genengtirelatively long biographies.
The need for person descriptions has been addressed inghbyplR, summarization
and NLG techniques. IR-based systemdi(lgr and Kutschekmanesch, 1995) look for
existing biographies in a large textual database such dstérmet. Summarization tech-
niques (Radev and McKeown, 1997; Schiffman, Mani, and Conoap2001) produce
a new biography by integrating pieces of text from varioxsual sources. Natural lan-
guage generation systems for biography generation (TeidBateman, 1994; Kim et
al., 2002) create text from structured information sourcBROGENIE is a novel ap-
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proach, which builds on the NLG tradition. It combines a gater with an agent-based
infrastructure expecting to ultimately mix textual (likeigting biographies and news arti-
cles) as well as non-textual (like airline passengerséistsbank records) sourceR®
GENIE offers significant advantages, as pure knowledge souneesable to be mixed
directly with text sources and numeric databases. It de®fgom the NLG tradition, as
it uses examples from the domain to automatically consttantent plans. Such plans
guide the generation of biographies on unseen people. Mergihe output of the sys-
tem is able to be personalized; and by the fact that the sylsti@ms from examples, it is
able to be dynamically personalized.

2.5 Conclusions

The Strategic Generation literature is quite vast. It uguddals with the many ways to
model the Strategic Generation phenomenon. For the sakesafissertation, this litera-
ture puts forward different representations to capturé ptnienomenon in NLG systems.
This thesis contributes some empirical answers to the iguest which representations
might or might not been amenable for learning.

The NLG machine learning literature is more recent thantitat8gic Generation
counterpart, although it starts gaining ground. Nevee$®l Strategic Generation have
not received as much attention in NLG learning as the surfa@ceration and sentence
planning areas.
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Chapter 3

Indirect Supervised Learning

To address the needs of Strategic Generation, | learn setdesfand schemata. Even
though each of these two representations pose differebteans and challenges, | learn
both from a Text-Knowledge corpus, using similar methodsthls chapter, | introduce
the methods common to both learning tasks.

The evidence available as input to my learning system matesui indirect
source, as my Knowledge and Text pairs are different fromidbeal training material
to learn Content Selection rules or Document Structurings@ata. In both cases, the
ideal training material are input and output pairs. In theecaf Content Selection, these
pairs are pairs of Knowledge and Relevant Knowledge, whildaéncase of Document
Structuring, they are pairs of Relevant Knowledge dndument plansinterestingly, a
compound data structuren@tched tejtcan be derived in an unsupervised fashion from
the Text-Knowledge corpus to solve this lack of ideal tnaghmaterial. Amatched text
is a semantically tagged text where each tag is linked to ttmeviedge representation
conveyed by the piece of text under the tag. The ideal trgipairs mentioned above
can be easily extracted from theatched textFor instance, the Relevant Knowledge can
be read out from anatched texas all the knowledge that appears matched somewhere
in the text. Similarly, thedocument plartan be approximated from the placement clues
provided by thematched text

This coupling of an unsupervised technique (constructibthe matched text
with a supervised one (learning of Content Selection rule®acument Structuring
schemata) is what | calhdirect Supervised Learnin@ection 3.2) and is the focus of
this chapter. The next two chapters will then present theipe of the Indirect Super-
vised Learning process for each task: extraction of thaitrgimaterial from thenatched
textand supervised learning. While the supervised learning\séps in each case, |
conclude this chapter by presenting an unified view of thbertegie employed to learn
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both Content Selection rules and Document Structuring sakenh will now introduce
some key definitions.

3.1 Definitions

In this section, | define my knowledge representation, theohgosition of texts into
phrases, thenatched textand related notions. These definitions are used in the algo-
rithms presented in the next sections.

Knowledge Representation. | expect the input data to be represented in a frame-based
knowledge representation formalism, similar to RDF (Lasaihd Swick, 1999). Each
frame is a table of attribute-value pairs with a unioqN@ME and a distinguishe@YPE
feature (that can be linked to an ontology, if provided). eattribute is unique, but it is
possible to have lists as values. As such, the values caithae atomic or list-based. The
atomic values | use in my work areUVERIC (either integer or float); ®vBOLIC (or
unquoted string); andiRING (or quoted string}. Non-atomic values are lists and frame
references. The list-based types are lists of atomic valuésme references. Because
my knowledge representation allows for cycles, the actnahedge representation can
be seen as a graph: each frame is a node on the representatiteee are edges labelled
with the attribute names joining the different nodes. Atoralues are also represented
as special nodes, with no departing edges (Figure 3.1).

Data-classes. Any equivalence class over the nodes of the graph qualifiesdeta-

class. Data-classes are similar to semantic tags in otheexts. | will describe now
the data-classes | use in my work, but other definitions assipte (for example, path
plus frame types across the path), a subject | am interestpdrsuing in further work
(Chapter 9, Section 9.2).

Data-paths. As domain independent data-claséégmployed paths in the knowledge
representationdata-paths). | need to identify particular pieces of knowledge inside
the graph. | thus select a particular frame asrth@ of the graph (the person whose

LA STRING is a regular English phrase (e.Gone with the wind’) while a SrmeoLic field is ei-
ther a reference to another frame (ef.ace- of - st udy- 22) or a value linked to an ontology (e.qg.,
tv-or-radi o- anchor).

20ther alternatives as domain independent data-classemsseble, but data-paths are easier to con-
ceptualize and to implement. The communicative predicdéssribed in Section 5.1, Chapter 5 can be
considered domain dependent data-classes, a subject hbsftether investigated.
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relative-2

) erson
person  pashiel” P

Figure 3.1: A frame-based knowledge representation ex@amplthe biographies do-
main. Here, “Daniel” and “Dashiel” belong to the same dd&ss, namely defined by
the data-patiir el ati ve person nane first).

biography | am generating, in my case —doubly circled in thhar) and consider the
paths in the graph as identifiers for the different piecesabd dEach path will identify
aclassof values, given the fact that some attributes are listedl{e.g., the el ati ve
attribute in the figure). | use the notatigat t ri but ey attributes...attributep)
to denote these data paths (Figure 3.1 shows an example).

Text. Atextis a sequence of words.

Concept. To compute statistics over knowledge representationsd memeans to de-
compose them into statistical events. A concept is anytthatjcan be asserted to be
true or false (false as a negation of true) given a knowleageesentation. To avoid
data sparseness | employ concepts in the form of a data-gathatomic nodeandthe
value of the atomic node(e.g.,((bi rt h date day),5)). More complex concepts
can include decision logic (e.gralue> 35) and mix several atomic nodes, a subject |
started some preliminary investigations (Duboue, 2004 l@rify, based on this defini-
tion, ((bi rt h date day),5)and((bi rth date day),6) aredifferent concepts.
(birth date day) is a data-path (a type of data-class), and not a concept.

Phrase. In the same vein, phrases provide a way to decompose a texstatistical
events over which statistics can be computed. In my work,vehesed uni-grams as
phrases (bi-grams in preliminary investigations (Duboné BcKeown, 2003a)). This
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decision was also taken to avoid data sparseness. In gepattgrns over the text (e.g.,
“found x out”) would make for ideal phrases.

Verbalization Dictionary. A function that takes a concept as input and returns a set of
phrases that can potentially verbalize the given concept.

Matched Text. A matched tex{an example is shown in Figure 3.2) is a text where
selected phrases are linked to concépiEhe data-path provide a semantic tag for the
piece ofmatched text

3.2 Indirect Supervised Learning

My work can be termed Indirect Supervised Learflitpcause my training material
is fully supervised but the input/output pairs do not have itiformation needed for
direct learning. | thus have input (the knowledge represeort), output (text) and a
hidden class (thdocument plans | want to learn the mapping from input to the hidden
class (how to builddocument planérom a knowledge source, the task of the strategic
component in a NLG system) and | have a model of the mapping the hidden class
to the output (frondocument planto texts, the remainder of the NLG system). The key
is that | want to learn the estimator for the hidden claggether with the estimator for
the text to the hidden class. While | could have a classifigrabsigns sets of observed
outputs to values of the hidden class, | am actually tryinggproximate this classifier
from some independence assumptiens.

My current model assumes that the hidden classqdwment plahis the only
element needed to determine the wording in the text (an ewf#gnce assumption). |
thus consider the text to be randomly sampled from all this tiésat verbalize thdocu-
ment planFigure 3.3). Therefore, Indirect Supervised Learningthassteps; in the first
step, the indirect training material (natural datasetasdformed into direct training ma-
terial (the hidden class is elucidated). In the second sigjput learning representations

3In this thesis, a phrase can only be linked to at most one @bndhis is a simplification that fits
my data as partially overlapping tags are extremely raran@etely overlapping tags are dealt with the
disambiguation techniques presented later in this chapter

4Indirect Supervised Learning, where the system learns indlinect, teacher provided examples is not
to be confused with Semi-Supervised Learning. The lattarbisotstrapping method while the former is
related to re-inforcement learning.

SAnother possibility would be to use EM (Dempster, Laird, @bin, 1977), but that will imply
learning both a generaticand an extraction system, something clearly outside the scbipgsathesis.
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1 <birth date day> 29 KNOWLEDGE

2 <birth date month> 10

3 <birth date year> 1971

4 <birth father name first> Michael

5 <birth father name last> Horowitz

6 <birth name first> Winona

7 <birth name givenname> Laura

8 <birth name last> Horowitz

9 <birth mother name first> Cindy
10<birth mother name last> Horowitz
11 <birth place city> Winona
12 <birth place province> MN
13<birth place country> USA
14 <name last> Ryder
15<name first> Winona
16<occupation> c-actress
17 <occupation> c-model
18<relative relative name first> Michael,Cindy
19<education place city> San Francisco
20<education teaching—agent> American Conservatory Theater
21<significant-other name first> David

Figure 3.2: An example of anatched tex{excerpt). Here, for example, “American
Conservatory Theater” is linked to item number 20 (one of taments at the end of the
data-pathleducat i on t eachi ng- agent )) in the knowledge representation.
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Text
Structuring
Document Aggregation &
Plan Lexicalization
Text /

Figure 3.3: Learning Architecture. The full circles remesobserved data (text and
knowledge in my case). The grayed circles represent hiddaables (relevant knowl-
edge andlocument plangr my case).

are learned in a supervised way, from the training datasettnected in the previous
step.

A different alternative | explore in Chapter 6 is to compute thutput of the
hidden class, that is, to produce text from tl@cument planand then use text-to-text
metrics for learning. However, as | am not learning the ti@msation fromdocument
plansto final text, the verbalization becomes a deterministip stbere no parameters
are estimated, and will therefore be a source of constasefoi

3.2.1 Evaluation

The evaluation process | follow for my Indirect Supervisezhtning task is also a con-
tribution of this thesis, as it lets me evaluate both the suped and unsupervised steps
at the same time. Given the training material, | divide ibitvain (Tr) and testTe) sets.
| then proceed to hand-annotate the testEek (

To evaluate the unsupervised part, | jdir4- Te(again, only to evaluate thensu-
pervised partand induce annotations automatically (by virtue of thewpesvised nature

6ln Chapter 6, | am already dealing with a very noisy environtn¥erbalizing the knowledge lets me
gain more information from the training data as the semantdisses are too general. For example, gener-
ating the text and comparing it to the target text is necgdsadistinguish tachycardia from bradycardia
problems (both are mapped to the “intra-op-problems” s¢im#ay). That is not the case with theatched
textspresented in this chapter.
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of the process) over the whole + Teset. Now, | bring back the human annotations over
Teand use them to evaluate the quality of the automaticalligasd annotations. This
measures the quality of the training material for the suged/part.

To evaluate the supervised system, | execute the unsuedrsystem again, but
now only overTr alone. | then use the annotations automatically obtainediavto train
the supervised system and execute it ovefthat was not available during training at
any poin) and compare it to the quality of the human annotations ©eell his measures
the generalization power of the technique.

| evaluate the matched texts extrinsically for Content Selacand Document
Structuring. The extrinsic evaluation (how good are th&ched textsvith respect to
selection and ordering) is motivated by the fact that | dohaee a gold standardatched
textconstructed by hand; instead, | have annotated the seidabels on the text set and
ordered them by first mention on the text.

As a Content Selection metric, | use precisi®), (recall R) and F* measure,
from information retrieval (van Rijsbergen, 1979). They dedined as:

true positives

P= true positivest false positives
R — true positives
true positivest false negatives
- PR
P+R

Wheretrue positivesis the number of atoms present in both the hand-tagged test se
and the automatically constructethtched textsThe number of items wrongly included
becomes the number tdlse positives Finally, the items that should have been included
but were missed are the numberfalise negatives

To evaluate statistical significance of the results, | fottd Mitchell (1997), pages
146-147, and dividgr andTeinto three non-overlapping folds. In each fold, | executed
different variants of the system and then compheer differences in error rate on each
fold. This constitutes a case of a paired experiment (every syisteained and tested in
the same data). Because each of the sets is non-overlagmsgetting makes for more
reliable statistics. For each fold, tkeeror rate E defined as

_ false positives-false negatives
B total cases

is computed. Then the error differena&sn each fold are computed. Therefore, given
three foldgTr1, Tey), (Tro, Te), (Trz, Tes) and two system variant&, #g, each variant

E
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is trained in(Try+Tey), (Tro+Te), (Trz3+ Tez) and tested iflTe;, Tey, Tes. Then
defining:

Y VE
5 = EiA_EiB

3
5 = 33
1 3

% = Js@%zf‘i‘”z

The true difference in the two variants lies in the interval

g:t tN’zsg

Whered is the mean of the differences afg is an estimator for the standard
deviation of the differences. Theyn are thet-values for two degrees of freedom and
they depend on the confidence intervd®4). They are given by the following table:

| N =] 90%| 95% | 98%| 99% |
| t= [ 2.92] 4.30] 6.96] 9.92]

As a Document Structuring metric, | employ Kendali'sorrelation coefficient
(Lebanon and Lafferty, 2002) between the elements commtretband-tagged test set
and the automatically obtained training material:

2(number of inversion
N(N—1)/2

T=1—-

WhereN is the number of atomic values in the intersection and inwassis the number
of exchanges on consecutive objects required to put thefmeiider appearing in the
hand tagged reference. This metric ranges over the intertaD, 1.0] with a value of 1.0
meaning perfect correlation, 0.0 no correlation and -1v6rige correlation. As explained
in Chapter 5, this is an accepted metric for ordering in texicstire (Lapata, 2003).

3.3 Unsupervised Construction of Matched Texts

In this section, | detail how general training material,he form of Text and Knowledge
is transformed into anatched texta training material that can be used for both the task
of learning Content Selection rules and Document Struajusochemata.
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3.3.1 Dictionary Induction

Indirect supervised learning involves an unsuperviseg, §i@sed on assumptions on the
structure of the model, to elucidate the hidden variablesapérvised steps to generalize
from the constructed mapping. My assumptions are relatéldetovays knowledge can
appear on the text. This model is summarized by the folloviing tests, wherd is

the null hypothesisp andc are particular phrases and concepisjs the set of phrases
that make a particular tex® is the set of concepts that make a particular knowledge
representation (wher& and & refer to the same entity) an# is the verbalization
dictionary:

Ho: P(pe ZIce®)=po=P(pe £) if p¢ 2(c)
Hi: P(pe Zlce@)=p1>p=P(pe ) if pcZ(c

The null hypothesi$lp (an independence equation) can be paraphrased as saying
that if a phrasep does not belong to the verbalization dictionary for a givenaeptc,
then, for a given text (decomposed into a set of phraggsknowing that the concept
belongs to the knowledge representation associated wathtéixt does not affect the
chances of the phrageappearing in the text. On the contrak, says that the chances
are much greater if the phragedoes belongo the verbalization dictionary af. This
model is inspired by the work of Dunning (1993). It is cleaatthgiven a verbalization
dictionary 2, thematched textonstruction reduces to a disambiguation task. My exper-
iments, however, usdy andH; in an attempt to elucidate th# while constructing the
matched texts.

In a sense, | am using the existence of a concept in a particotaviedge repre-
sentation as a way to partition the set of all knowledge =g&tions. For example, |
can use the concept of being a comedi@tcupat i on),c- conedi an) to put together
all the data of comedians vs. non-comedians. | then wantd $ean observe changes
on the distribution of phrases over the texts associatdutivit partitions. This statistical
test selects words that are then added to the verbalizaittinrary (Figure 3.4). | will
now analyze each of the components of the system (Conceptétation and Statistical
Filtering)

"This is not the knowledge representation of the text itdeif the knowledge representation associated
with the text in the aligned Text-Knowledge corpus.

8This technique will not learn verbalizations for open claalies, although in such cases using the
actual phrases as verbalizations produces useful res@trfomber of data-paths.
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Figure 3.4: Dictionary induction.

Concept Enumeration

The dictionary induction starts by enumerating all pogsdancepts that can be asserted
over a set of knowledge representations. This process $taegnumerating all paths in
a composite graph (e.gbi rt h dat e day)) and then checking the possiblalues
that can be found at the end of each path for each of the inmwlkadge representa-
tions (e.g.,((bi rt h date day),29) for Winona Ryder,((bi rt h date day),2)
for Pablo Duboue and so on). Concepts found this way make &oga total number (the
concept enumeration can generate as many as 20,000 comcapjiigen run). Only con-
cepts that are true for a minimum number of knowledge reptasiens (the concept’s
support) are used. More complex concepts can be enumerated viaichgs{Duboue
and McKeown, 2003b). Thus open class sets are only enurdei@atéheir more com-
mon elements (e.gf,i r st - nane="John”). In my experiments, | use a support value
of thrsypp as shown in Table 3.10.

Hypothesis Testing

| then compare the distribution of phrases in the partitibtests associated with the
partition in the knowledge representations induced by tmeept? That is to say, | want
to see if there is a change in the distribution of words betwibe two sets; for example,
if the biographies of people born in ‘MI’ (a concept) have gher-than-expected chance
of containing the phras#Michigan.”

Therefore, | have two sets of texts (Michigan and non-Miehigand | analyze if
they diverge in their associated language models over pbrdghey represent samples
coming from two different distributions. To achieve thisafjd collect phrasal counts

%n the general case, a concept is anything that can be a$sette true or false in a given knowledge
representation. Therefore, a concept naturally divide afknowledge representations into two sets: the
set of knowledge representations where the concept hottltharset where it does not.
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(uni-grams over words in my case) and analyze whether ohesetcounts can be con-
sidered samples coming from the same probability distobut | collect counts over

all phrases (i.e., words in my case). This process is scheatgtrepresented by the
pseudo-code shown in Figure 3.5.

Student’s t-test. | investigated statistical tests on the counts for eachgghom either
partition. In my statistical test, | test the null hypottethiat these words appeared there
just by chance. For example, if the partition is induced leydbncepthis or her occu-
pation is to be a comedian[’'want to conclude that their associated biographies contai
the phrases (i.e., wordsomedian,” “stand-up,” and“comic” more than expected by
chance on this corpus.

There might be other terms found frequently for a given cphtteat are not exact
verbalizations of that concept. For example, for peoplenborMichigan, phrases like
“Upper Peninsula” or “Detroit” are to be expected. Therefore, this approach might
over-generate.

| compared three statistical test$, likelihood ratios and Student’s t-test. My
counts were too small fox?, likelihood ratios do not allow for the sampling process
described below and therefore only Student’s t-test is asquhrt of the final algorithm.

I have the total number of occurrences of the events (in #se cphrases) and |
want to see if a phrase is associated with the partition ieduny the concept. There-
fore, as shown in the pseudo-code in Figure 3.8, | split this této two sets, the texts
belonging to the partition, and the texts that do not belanthé partition. If | apply
likelihood ratios or similar techniques to the counts agded with the whole clusters,
usually the most descriptive phrases for each element ioltister will prevail (e.g., in
the case of biographies, tmamesof the people involved in the cluster will apped?).
| thus resort to aampling process to avoid this effect. | sample sets of five texts from
the partition and five from texts outside and collect phrasahts. After several samples
(100 in my case), | end up with two sequences of numbers, septiag the number of
times a given phrase appear in each partition; to deterrhthe itwo sequences of num-
bers belong to the same distribution | use the Student'sti-tdf the test results are over
a thresholdhr; (see Table 3.10), | consider the phrase to be a verbalizatddimg it to
the verbalization dictionary.

10The same problem will appear if | use weighted counts, e.gighting each word with its TF*IDF
weight.

1170 see how the sampling filters out the name of the personitiesdn each biography, notice that in
each sample the names will have a strong difference in cdttthat difference will not be carried out
across the board —unless the same person appeared in alesaamplnlikely event.



C+0 ; set of all concepts
P+0 ; set of all phrases

FOREACH (T,K) € set of all text-knowledge paif3o
C + Cu set of all concepts in K
P+ PUsetof all phrasesin T

DONE

FOREACH conceptt € C DO
s+ 0 ; all text-knowledge pairs where ¢ holds
ns<«+ 0 ; all text-knowledge pairs where ¢ doest hold

FOREACH (T,K) € set of all text-knowledge paii3o
IF ¢ holds on KTHEN
s« sU{(T,K)}
ELSE
ns<« sU{(T,K)}
Fi
DONE

; look for words associated with the partition s/ns

FOREACH pe P Do
Countg=ARRAY[100]
Countgs=ARRAY[100]
FOREACH i = 1..100 Do
Sample=select at random 5 texts from s
Samplgs=select at random 5 texts from ns
Countg[i]=number of times p appears in Sample

Countsgdi]=number of times p appears in Samyple
DONE

IF Countg and Countgs are stat. sig. differenTHEN

Add p to the verbalization dictionary for ¢
Fi

DONE
DONE

Figure 3.5: Pseudo-code for the hypothesis testing stdpealittionary induction.
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birth date nmonth),3) March.

birth date day),17) 17.

({
({
((bi rth placecountry),England) England, Britain, UK, British
({(si gni ficant-other #TYPE),c-fianceg dated, engaged

({

occupat i on #TYPE),c-job-comedian comic, stand-up, Comedian, Comedy,
comedian, comedy, comedic, Comedians

Figure 3.6: Extracted words.

VERBALIZE .
matched

-
-

DISAMBIGUATION HESSY
Figure 3.7: Verbalize-and-search.

knowledge

The output of the dictionary induction process is a verladilin dictionary con-
taining sets of putative verbalizations for each conceph ekample of newly added
words is shown in Figure 3.6. | only evaluated this dictignaxtrinsically, my measur-
ing its impact on the quality of the obtainethtched texts

3.3.2 \Verbalize-and-search

Theverbalize-and-searcprocess (Figure 3.7) aims to identify pieces from the inpat t
contain known verbalizations in the target text. It enrehenatched texinitialized with
plain target texts. The verbalization step takes a congepteturns all the phrases asso-
ciated with the concept in the verbalization dictionaryr &ample, given a concept such
as (name first),“John"), | will search for the string&John”,“J” and“JOHN” . To
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search for the phrases in the text, any classical searchthigocan be employed, e.qg.,
KMP or Boyer-Moore (Gusfield, 1997).

The overall operation is prone to two type of errors: omisgibthe verbaliza-
tion dictionary misses the exact verbalization, ecg.conedi an appears in the text as
“he performed comedy for several yearst “MA” instead of‘Maryland” ) and over-
generation (if there are several values for it, €:§mith” appears in the text and it is
simultaneously the name of the father and a brother). Thedoerrors were addressed
by thedictionary induction technique described in the previous section. The latter er-
rors are addressed by meangisfambiguation methods explained below.

Disambiguation

The ambiguity problem in theerbalize-and-searcapproach cannot be overlooked. For
example, Winona Ryder was born in a city named Winona, in Mintee When the
phrasé'Winona” is found in the text whether the previous words ‘drern in” or “born
as” can provide strong indication for either usage. To acqliescbntexts“pornin” vs.
“born as”) for each data-clasgrame | ast) vs.(birth place city)), | compute
all ambiguous matches across documents and use standandbdisiation techniques
(Naive Bayes) to smoot the evidence and decide for each class against a null model
(trained in every word in the document). This is a local dibayuation, using a very
small window (v = 3, see Table 3.10).

In other words, | accumulate statistics for matching at taeatlass level. Each
match is delimited by a context and all the contexts are actated across all the mem-
bers of the class. This process works on the assumptionfiraéxample, the words
surrounding the name of a relative are the same across ndmaatives and different
biographies. Therefore, | have my list of verbalizationd Hre places where they match,
some of these matches are spurious matches, but working dryplothesis that the good
matches still outnumber the spurious ones (somethinggmetrimally the case), | collect
statistics from all these contexts. Figure 3.8 shows pseode for this process.

Moreover, | retrain the disambiguators after some matclags been identified
to improve their generalization capabilities. For examjiflany system has success-
fully identified an occurrence dRyder” in the text“Winona Ryder is an actressas
(name | ast ), it can use it later to disambiguaté/inona” as (nane first) rather
than(birth place city).

2This is similar to train and execute in the same corpus ansl iused as a smoothing technique. |
also performed experiments with leave-one-out genetadizabut such approach was much slower and
produced slightly lower performance.
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NullModek— 0
FOREACH T € all available textdDo
FOREACH word in placewe T Do
Train NullModel for a small context (window- 3) around w
DONE
DONE
M0 ; all matches
FOREACH (T,K) € set of all text-knowledge paii3o
FOREACH concepttc € K Do
M < MuU set of all matches in T for a verbalization of ¢
DONE
DONE

Path MOdeaata_pathé— 0

FOREACH data-pathd € all possible data-path®o
FOREACH matchm € M such that path of m equals toBlo
Train PathModej for a small context (windowt 3) around m
DONE
DONE

MatchesToAdd- 0

FOREACH matchme M Do
IF PathMod%ath of M) > NullModel(m) THEN
Add m toMatchesToAddrdered by the score dPathModel
Fi
DONE

Figure 3.8: Pseudo-code for the disambiguation step invialize-and-search
matched text construction.
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Table 3.1: Impact of the different disambiguation methedhematched tex€Construc-

tion.
| Disambiguation Method Precision | Recall | F-measure |
Naive Bayes 0.706+ 0.007| 0.684- 0.013]| 0.694+ 0.010
Naive Bayes (Strict) 0.636+ 0.028| 0.416+ 0.007| 0.503+ 0.013
HMM 0.698+ 0.016| 0.543+ 0.009| 0.61H4- 0.006
HMM (Strict) 0.526+ 0.011| 0.05A 0.015| 0.1006+ 0.022

While my final system uses W& Bayes disambiguation, | also investigated three
other variants, shown in Table 3.1 (this experiment was donéebi ogr aphy. com
corpus mentioned later in this chapter). In the table sthiet variants refer to whether
to require that only the left or right context decides in fagbthe class (regular variant)
or to require thaboth contexts decide in favor of the class (strict variant). Mypen-
ments with the strict variant did not confirm the intuitioratlit should provide a higher
precision, therefore | discontinued its use. | also re-enpnted a HMM-based disam-
biguator following the bENTIFINDER trainable named-entity system (Bikel, Schwartz,
and Weischedel, 1999). My implementation, however, didmdtide the complex class-
based smoothing complexities described by Bikel et al., atlinferior performance to
the Ndve Bayes approach. | thus decided to focus on theélBayes technique.

3.4 Data

The Text-Knowledge corpus used in this chapter consisteofdedge extracted from a
semi-structured knowledge base, biographical fact-shafesissorted celebrities. These
fact-sheets were crawled from E! on-lirfén November 2002. In addition to this knowl-
edge source, | also employ an extended knowledge souroeexlacted from E! on-line
but with a slightly different ontology and with added infaatron about which movies
each actor appeared in. This extended knowledge sourcensagporated as part of
these experiments at the end of this dissertation and wasseot during system devel-
opment (i.e., no parameters were fit on this corpus). Diffebgographical sites provide
the text part, to test the ability of the system to learn fraffecent types of data. The
process of constructing this Text-Knowledge corpus isilietén Chapter 7, Section 7.1,
| will just detail here the overall size of each Text-Knowdedcorpus. As explained in

Bnttp://eonline. com
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Section 3.2.1, each corpus was split into a training andsegsiwith the test set tagged
for selection and ordering (ordering only in the last cojgasthe author.

3.4.1 biography.com

The bi ogr aphy. comcorpus is the smallest (in number of pairs) corpus of the col-
lection and it was used mostly for development. The biogespare clearly written by
professional editors and present the higher level of homeigye

bi ogr aphy. com| Total Average | Train | Test |
# pairs 102 - 91 11
# frames 4,956 45.588| 4,442 514
# triples 10,628 104.196 9,500| 1,128
# words 54,001| 529.422+ 301.15| 49,220| 4,781
# chars 337,775| 3,311.520+ 1,857.96| 307,978| 29,797

In the table pairsrefer to the number of text and knowledge pairamesrefer to
the number of internal nodes in the grapiplesrefer to the number of triples in the form
(frame, link, target), the equivalent of an arrow in Figur#;3vordsandcharsrefer to
the number of words and characters in the target texts, céeply. The average number
of words per biography and its standard deviation speaksibé dengthy biographies
with a stable length (compared to the next two corpora).

The test set contains 334 selected triples, from a total dftriples to select
from (an F24 for the SELECT-ALL strategy of 0.62 —The B ECT-ALL strategy can be
thought of as a baseline). The total number of triples isedgft than the number shown
in the table as the table also shows triples that conneahmiteodes.

This corpus was a fine development corpus, as its small d@eed me to imple-
ment and test different ideas quite quickly. On the othedh#éms corpus constitutes a
high baseline that makes it difficult to appreciate the netadifferences of system vari-
ants. For that reason, | introduced the other corpora @eftaixt, each of which presents
a relatively hardematched textonstruction task.

3.4.2 s9.com

The s9. comcorpus is the largest corpus (in humber of pairs) and the dtte the
shortest biographies. The biographies are mostly onesliawed it is unclear whether or
not they have been written by editorial staff.

14| abbreviate the F-measure from Information Retrieval agFhis dissertation.
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s9.com| Total Average Train | Test |
# pairs 578 - 558 20
# frames| 30,709 53.130| 29,723| 986
# triples 95,032 164.415| 92,969| 2,063

#words | 21,037 36.396+ 34.04| 20,192| 845
#chars | 138,711| 239.984+ 215.82| 133,204| 5,507

Because of the small size of each biography, this is a chatigr@prpus, where
out of 1,377 triples to select from, only 170 are selectedRaor the SELECT-ALL
strategy of 0.22). The texts are so small (36 words on avgthge one would be hard
pressed to call them biographies. The standard deviatiaisaspretty large.

3.4.3 i nmdb. com

In previous work (Duboue and McKeown, 2003a; Duboue, 200#9ye used the corpus
assembled from ndb. comas a test corpus. It is of medium size and has biographies
submitted by volunteers over the Web; this made it more ehglhg than corpora written

by an editorial staff.

i mdb. com| Total Average Train | Test |
# pairs 199 - 185 14
# frames 10,123 50.869 9,362 761
# triples 31,676 159.176| 29,323| 2,353
# words 64,196| 322.593+ 285.63| 60,086 4,110
# chars 378,778| 1,903.407+ 1,693.88| 354,560| 24,218

The test set contains a total of 369 selected triples oul@Ql(an F* for ELECT-
ALL of 0.516). While the size of each biography is around 300 wadss the standard
deviation; and thus, the biographies on this corpus arelgletdiverging sizes.

3.4.4 w ki pedi a. org

Near the end of this dissertation work, | created an extekded/ledge source by adding
to the previous knowledge extra information in the form dfsaic credits (the movie
starred by each actor). This extended knowledge source avesdpagainst biographies
from wi ki pedi a. or g. The sitew ki pedi a. or g is a collaborative collection of
encyclopedic articles embodied in the concept of a Wiki, gepihat allows any person
with WWW access to edit it. The Wiki approach produces a veryadyio set of pages
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that pose a more challenging environment than the previoysoca. On the bright side,
this corpus contains more pairs than ithedb. comand it has a very liberal license
that allows for corpus re-distribution. This is the only pos annotated with ordering
information, because the extended knowledge source igtllgeone compatible with the
hand-written communicative predicates presented in Ch&ptd@hese predicates are a
requirement for learning Document Structuring schemata.

wi ki pedi a.org || Total Average | Train | Test |
# pairs 361 - 341 20
# frames 58,387 161.737| 55,326| 3,061
# triples 108,009 299.194| 102,297 5,712
# words 68,953| 191.006+ 55.17| 64,784 4,169
# chars 418,035| 1,157.992+ 334.01| 392,925| 25,110

The test set contains 598 selected triples out of 2,906 (d0f3eLECT-ALL of
0.341).

3.5 EXxperiments

The architecture presented in the previous sections leaaes for a number of varia-
tions, some of which | have investigated in this thesis. éstigated the following issues:

Addition of the matches to the matched textbeing constructed. As mentioned in
Section 3.3.2, it is advantageous to retrain the disambigsiafter a certain number of
matches have been identified. | investigated two posséslibr adding matches to the
partialmatched textl describe them below.

(Path,gg) Path-based addition. | have investigated adding all mateha data-path in
order (data-paths with more selected matches first). Fdérmatch, the algorithm
selects the ones with a score over the null model for thatipasil then record
the percentage of total matches over selected matches.atégdth with a higher
percentage was considered to be of better quality and thidesdaid thematched
text The problem of this approach is that it may incorporate adgteal of noise
in one step (and that noise will be carried on afterwardshaslgorithm does not
allow for backtracking).

(Scoregqq) Score-based addition. To avoid the problem of forcing asieciover all
elements in a data-path (including some matches over whielsystem has less
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than perfect evidence), | investigated adding a percenshglee higher scoring
matches (across different data-paths) in each step. Gigehd selected matches
(i.e., matches that are higher than the null model), | ordemt by their predicted
belonging to the class. | then add to thmatched texthe top scoring 10% of
the matches in the first step (20% in the second step and solmigeneral, an
EM-based algorithm (Dempster, Laird, and Rubin, 1977) welktire most general
solution to this problem, but will imply learning also howegtract the knowledge
from the text.

Creation of the verbalization dictionary. While in this thesis | focus on the auto-
matic construction of the verbalization dictionary (SentB.3.1), this dictionary can be
obtained in a number of ways, some of which do not necessadlyde learning:

(Trivial giet) Trivial. The verbalization for (pathphrase is phrase e.g., for a concept
such ag(name first),John), the verbalization iSohn This will obviously not
work in the case the value is not phrase, €arcupat i on TYPE,c- pai nter).

(Externalyict) External. A small external dictionary with possible verbations of
states, months and numbers can be provided as a knowledgd-&sdernal verbal-
ization dictionary. This problem of small variations in niiens and dates is similar
to the problem of telling them apart in Speech Recognitioreading them aloud
in Speech Synthesis (Jurafsky and Martin, 2000); | thus eynalsmall verbal-
ization system based on Finite State Transdusrallow generation grammars)
Examples of these paraphrases include number verbahzafeg.,"three” for
‘3"), months (e.g.,“September”for ‘9") and state names (e.g:Michigan” for
‘MI").

(On-linegict) On-line. The on-line dictionary construction implies extieg the dictio-
nary induction only when the number of available matcheswsdr its quality is
below a thresholdhr,qq (see Table 3.10). For example, in the data-path variant,
if the ratio of matches accepted by the disambiguator isvb@%6 (that is 80%
of the matches for a data-path are considered spurious jigambiguator), the
dictionary induction is executed. An advantage of thisasairis that the dictionary
induction is executed over tmeatched textsyhere the pieces of text matched to a
concept are replaced with semantic tags —the data-pathdardncept.

(Off-linegict) Off-line. This involves executing the dictionary inductialgorithm before
theverbalize-and-searchrocess. Because the partial matches are not available at
this point, this dictionary induction may introduce somésean the process.
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| explored these options through the following variants:

Variant O (Pathygqt Trivial gict) Simplest system, with no dictionary induction and no
disambiguation; the most popular path is added first, wheplar means the
path with more matches. Such a system is similar to curreistyg approaches for
bootstrapping information extraction systems (Chieu, Mgl laee, 2003).

Variant 1 (Pathyggt On-linegit) This variant adds matches in a path-based fashion with
the dictionary updated after the scores fell under thresthol 4 (see Table 3.10).

Variant 2 (Scorggqgt Off-linegict) This variant adds matches to theatched texbeing
constructed in a percentage-based fashion, with an afeamputation of the dic-
tionary.

Variant 3 (Scorggqgt Externalgict) This variant adds matches to thmtched texbeing
constructed in a percentage-based fashion, using an ekterrbalization dictio-
nary.

Variant 4 (Scorggqgt Externalyict+ Off-linegict) This variant combines Variants 2 and
3; it adds matches in a percentage-based fashion, usingbatkternal verbaliza-
tion dictionary and an off-line computation of the dictiopa

The results for the Content Selection quality of the learmedched textare
shown in Table 3.2.

Variant 1 was computationally too expensive to compute @nlainger corpora
and onlybiography.comresults are included. The relative differences betweerakbi
and Variant 2 can only be seen if we plot precision and reaaihg thematched text
construction process (Figure 3.9 and Figure 3.10). Thedmare obtained by evaluating
thematched texbeing constructed as matches are being added to the matotiedte
y-axis measures precision and recall and the x-axis aratib@s on thenatched text
construction process. These figures show clearly how MVatiatarts very well until its
curves suddenly drop (around the tenth iteration), mostyikecause it commits itself to
add all matched instances in a wrongly matched data-patiant2, on the other hand,
has a much softer curve, where the benefits of re-trainingligembiguators on earlier
matches can be seen cleateven precision improves after some matches have been
identified.

18In Variant 2, the dictionary induction is performed offdirwhile the disambiguators are re-trained
after a percentagéiryop (Table 3.10) of the highest scoring concepts are added tmétehed text.
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In general, Variant O has the best precision across all carpeith Variant 4
presenting the best recall. When considerinigmeasure, Variant 4 has the bést
overall, although that is not the case in all corpora.

Because of the differences in Table 3.2 are pretty small, iaoted a cross-fold
validation experiment to test the differences between #@rgamnts. The actual results
of these experiments are presented in Appendix A. | will noenbere the highlights.
For bi ogr aphy. com only Variant 1 has a statistically significant differencéhaa
good level of confidence. F&9. comandi ndb. com no difference has a good confi-
dence, although the difference between variants 3 and #ui. comis noteworthy. In
wi ki pedi a. or g, the differences between Variant 2 and the Variants 0 aniduver3
are statistically significant with good confidence.

In this evaluation, the system is trained fr + Te) and tested iTe(as explained
in Section 3.2.1). Her&r is used to provide extra evidence to the dictionary inductio
and disambiguation methods. This approach begs the qoestithe importance of
the size ofTr for the results reported ov@re Moreover, because the cross-validation
experiments that measure statistical significance anmeslein one third ofl r each fold,
it is also important to understand how different such systeay be with respect to the
system trained in all'r. Figure 3.11 and Figure 3.12 show the impact of the siZ€rof
for Variants 2 and 3 in 10 different random subsets of diffieseze (10,11,..,30, 40, ...,
90) of Tr (plus all Te) and testing the obtained labels 8. The figures show clearly
that Variant 2 requires at least 60 instances to stabilizelevwariant 3 (that does not
performs any dictionary induction) profits from the extraiing material very slowly
(by improving the disambiguators).

Finally, to shed further light on the differences in Tabl2,3.analyzed the error
over each data-path. Tables 3.3 and 3.4 show major cordrgbtd the error and success
rates, respectively. These contributors perform sinyiladross all variants. There we
can see that the free-text paths (for example, paths thaherahned- t ext in this par-
ticular knowledge representation) and the symbolic paiathé that finish i TYPE, for
example) are responsible for a large number of errors. Onttier end of the spectrum
(more successful paths), there are paths suclawes d title) or (award reason)
(movie names and the like) that have higher chances of aipgeaarthe text exactly as
they appear in the knowledge representation (they areggranchors in the nomencla-
ture of Chapter 1). These are data-paths containing morediantéy alike information
and they are better captured by my system.

While my system has no provisions for free-text values, tiséahary induction
should deal with th&TYPE pat hs. This can be seen in Tables 3.5-3.8 that show er-
ror contribution itemized per variant for data-paths witlriant-related differences. In



Table 3.2: Content Selection results. See the text for dssons

Variant 0 (Pathygq+ Trivial gict)

| Corpus | Prec.] Rec.]| F* | selected
biography.com| 0.7407| 0.6432| 0.6885 297
s9.com 0.5108| 0.5280| 0.5193 184
imdb.com || 0.7118| 0.5303| 0.6078 295
wikipedia.org || 0.6952| 0.4664| 0.5583 420

Variant 1 (Pathygqt+ On-linegict)

| Corpus | Prec.] Rec.] F* | selected
| biography.com| 0.7112] 0.6842| 0.6974| 329 |

Variant 2 (Scorggqq+ Off-linegict)

| Corpus | Prec.| Rec.] F* | selected
biography.com| 0.7508| 0.6676| 0.7068 297
s9.com 0.5000| 0.5529| 0.5251 188
imdb.com || 0.7035| 0.5338| 0.6070 280
wikipedia.org || 0.6190| 0.4782| 0.5396 462

Variant 3 (Scorggq+ Externalgict)

| Corpus | Prec.] Rec.] F* | selected
biography.com| 0.7335| 0.6347| 0.6805 289
s9.com 0.5026| 0.5529| 0.5266 187
imdb.com 0.6853| 0.5311| 0.5984 286
wikipedia.org | 0.6280| 0.5083| 0.5619 484

Variant 4 (Scorggqgt Externalgict+ Off-linegict)

| Corpus | Prec.] Rec.] F* | selected
biography.com| 0.7466| 0.6706| 0.7066 300
s9.com 0.5193| 0.5529| 0.5356 181
imdb.com 0.6830| 0.5941| 0.5941 284
wikipedia.org || 0.6451| 0.5183| 0.5746 481

70
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bi ogr aphy. comcorpus, for example the table shows that the variants widtiahiary
induction (Variants 1 and 2) mildly address the symboliaifselith Variant 1 marginally
better than Variant 2. This is to be expected as Variant 1 doesy costly on-line dic-
tionary induction, where the dictionary is re-induced afeme matches are identified
(improving the quality of the language models). With resgeche differences com-
ing from the use of disambiguation, this can be appreciatede last name of relatives
((relative relative name | ast)). However, the use of disambiguators makes the
whole system more wary of places where little evidence adrasnes supports the match
(the system becomes more conservative). This situatightfiincreases the number of
mismatches in a number of paths.

The error analysis for the9. comcorpus (Table 3.6) shows the same overall
behavior ofbi ogr aphy. com although here the disambiguation improves more paths
than inbi ogr aphy. com Interestingly, as the system becomes more conservdtive, t
gains equalize again. This is because | am averaging oveathis. The table shows how
the distribution of errors is more uniform thanks to the dibeguated system. This will
be particularly important for the ordering behavior in thieki pedi a. or g corpus.

Table 3.7 contains the misses per data-pathnidb. com which are also in line
with the previous two corpora. Note hai rt h pl ace provi nce) benefits from the
small external dictionary in Variant 3.

The results for Document Structuring on thieki pedi a. or g corpus are shown
in Table 3.9. While the sequences are similar in length todkedet, according to Ta-
ble 3.2 only half of the information there appears also intést set. For these elements
in the intersection, there is a near-perfect correlatiothenordering. This implies this
data can be used positively to learn Document Structurihgreata.

The sequences evaluated here are sequences of atomicasthey appear in the
matched textThese sequences are different from sequences of inseghti@mmunica-
tive predicates (such sequences @meument plansbut they will nevertheless be used
in Chapter 5 to evaluate different schemata during learnifilge sequences of atomic
values will also be used to learn Order Constraints.

3.6 Conclusions

The process presented in this chapter is able to automgtidahtify training material
with anF*-measure as high as 0.70 and as low as 0.53 arakaigh as 0.94 and as low
as 0.86. These results imply that learning usingriached textas training material
will require a robust machine learning methodology as thesantroduced in the next
two chapters.
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Table 3.3: Major contributor paths to thesror rate per corpus. Hereducati on
#TYPE includes c-college-education, c-highschool-educatisingni f i cant - ot her
#TYPE includes c-spouse, c-datedel ative #TYPE includes c-mother, c-father;
occupat i on #TYPE includes c-actor, c-director, etc. Note thatki pedi a. org
uses a slightly different ontology wherel ati ve #TYPEis nowfani |y #TYPE and
awards are contained inside work events. In some cases timrgof birth is missed
because it may appear as an adjective (e.g., “Australiarstead of the noun in the
knowledge representation (e.g., “Australia”).

bi ogr aphy. com

i mdb.

education #TYPE
factoids canned-text
birth place city

com

factoids canned-text
claimtofame canned-text
education #TYPE
significant-other #TYPE
occupation #TYPE
relative #TYPE

birth mother name last

s9. com

claimtofame canned-text
birth place country
factoids canned-text
significant-other #TYPE
occupation #TYPE
relative #TYPE

wi ki pedi a. org

claim-to-fame canned-text
factoid canned-text

education #TYPE

education teaching-agent #TYPE
occupation #TYPE
significant-other #TYPE

family #TYPE

work-event #TYPE

birth place country
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Table 3.4: Major contributor paths to tlseccessate per corpus. Most entries are self-
contained.

s9. com

bi ogr aphy. com birth mother name last

birth father name first

birth mother name first

name last

birth date year

significant-other significant-other name last
significant-other significant-other name first
relative relative name first

birth date year
birth date month
birth date day
birth place country
award reason
award title

. com

education major canned-text

birth father name first wi ki pedi a. org
education teaching-agent name
birth place country

birth mother name first

birth place city

birth date year

birth date month birth place city

birth date day birth date-instant year

relative relative name givenname birth date-instant day

significant-other significant-other nam&#ation teaching-agent name name
award reason work-event award sub-title

award subtitle work-event award title

award title
relative relative name first

education subject-matter canned-text
education place city

work-event reason key

birth name first-name
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Table 3.5: Analysis of errors fdsi ogr aphy. comcorpus. The system had to select
334 matches; it selected 297, 74 of which were wrong (it ndiskEL). Here is a an
analysis, per data-path, of the major contributors to thergrand success rates. Each
column contains the number of misses per variant (from tted to select, presented in
the last column).

path misses per variant| total

O 1 2 3 | to select
claimtofame canned-text 11/10] 11 11 11
occupation #TYPE 16 /10| 13| 16 16
significant-other #TYPE 15,1415, 15 15
relative #TYPE 17116 | 15, 17 17
relative relative name last 9| 6| 5 5 11
education teaching-agent name 3| 3| 4 4 7
significant-other significant-other name first1 | 1| 2 2 15
significant-other significant-other namelast1 | 1| 2 3 13
award subtitle 4|1 5| 4 4 11
award date year 3| 3| 6 6 21
relative relative name first 1] 1| 3 5 14

Table 3.6: Analysis of errors f@9. comcorpus.

path variant total
0 2 3|toselect
birth father name last 2111 2
birth name last 11187 13
birth name first 5/5|3 14
name first 0113 16
relative relative name last 3 | 2 | 3 5
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Table 3.7: Analysis of errors farndb. comcorpus. Herebirth pl ace province
profits from the external verbalization dictionary andl ative rel ative name
| ast profits from the disambiguation (although it then hurésre | ast).

path variant total

0 2 3|toselect
birth father name last 5/0|1 5
education place country 1/0|0 1
birth place province 6/6|0 8
relative relative name last 11,24 12
name first 0|5]5 14
name last 0/9]9 14
significant-other significant-other name first0 | 0 | 2 9
award date year 2|55 13

Table 3.8: Analysis of errors for the ki pedi a. or g corpus. In this extended knowl-
edge representation #TYPE is the gender of the person whitsenation is contained
in the representation.

path variant total

0 2 3 |toselect
birth name last-name 6| 2| 3 6
birth place province 10/ 10| 1 10
birth date-instant month 19/16| 1 19
#TYPE 20| 15| 20 20
education place province 1] 1| 0 3
name last-name 0| 2| 4 20
name first-name O] 1| 1 20
work-event reason name name 3| 3| 4 16
family relative name last-name 13| 5| 4 18
significant-other significant-other name last-name2 | 2| 3 18
significant-other significant-other name first-namel | 3| 2 17
family relative name first-name 0O 1| 1 26
work-event date-instant year 1112 12 51
work-event built name name 2024 | 21 66
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Figure 3.9: Quality of thenatched textluring its construction, for Variant Pathyqqt+
On-lingyit). The figure shows an evaluation of the quality of thatched texbeing
constructed as the number of iterations progresses. It¢lasiasudden drop of precision
around iteration 10. This drop is due to the mass additiorl of@tches in a path with a

number of wrong matches.

Table 3.9: Document Structuring results. All these figurescamputed on the wikipedia
corpus, where the average sequence length in test set iS=2808559.

| Variant avg. length | T |
0 (Pathygg+ Trivialgict) 21.55+ 7.7083| 0.9400+ 0.0989
2 (Scorgqq+ Off-linegict) 23.10+ 8.3470| 0.8686+ 0.1283
3 (Scorgqq+ Externaljict) 26.50+ 12.2280| 0.9232+ 0.1004
4 (Scorgqg+ Externaljc+ Off-linegict) || 26.35+ 11.4260| 0.8909+ 0.1154
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Iteration Curves
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Figure 3.10: Quality of thenatched textluring its construction, for Variant S¢orgqq+
Off-lineyict). Similar to Figure 3.9, this figure shows an evaluation @ ratched text
as it is being constructed. Compared to Variant 1, Varianwo2lypces a much soft curve

which makes preferable in the general case.
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Impact of Training Size

1 T T T T .. T
Precision ——+—
Recall ---x---
F-measure :--%---
Error &g
0.8 -
0.6 -
04 -
0.2 —
0 1 1 1 1 1
0 20 40 60 80 100

combined training size

Figure 3.11: Impact of the training size for tieatched textonstruction, Variant 2
(Scorggqgt Off-linegicr). This variant learns the dictionary from the training netleand

it gets hurt by a lack of it. The figure shows how at least 60ainses are need to reach
stable results.
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Impact of Training Size
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Figure 3.12: Impact of the training size for tineatched textonstruction, Variant 3
(Scorgqqt+ Externaljict). This variant does not learn the dictionary from the tnagni
material and it only profits from a larger pool of data to imprdhe quality of the dis-
ambiguators. The impact of the extra training material sifpee albeit very small.
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Threshold| Description | Value
thry t-test cut-point 9.9
thragg Percentage of the available number of matches to rumoy,

the on-line dictionary induction.

Number of top scoring matches to add in each s.ted[:;m/
0

thriop (computed as a percentage of the total numbey
matches).

w Disambiguation window, in words. 3

thrsupp Concept support, in percentage of the total number gfpos

instances.

Table 3.10: Thresholds and Parameters imtiaéched textonstruction process.

Moreover, as it will be discussed in Chapter 8, the technigasgnted here cannot
learn after a certain point. Particularly, it has problenithiree-text fields (e.g., “claim
to fame”) or facts included in the text out of being of extidiaary nature.
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Chapter 4

Learning of Content Selection Rules

This chapter presents my work on the automatic acquisiti@set of Content Selection
rules. These rules provide a particular solution to the GunEelection task (a task
defined in the next section). | decided to use these symhdbs (also described in the
next section) as a representation for learning becausectigyre the requirements of
my Content Selection problem. Moreover, they are also eaapderstand by humans,
allowing the output of the learning system to be further edifor quality, if needed.

The internals of this rule learning process are the focubisfdhapter. The rule
learning mechanism described here learns fronmdéeal datasetfor the task of learning
Content Selection rules: knowledge data with selsel) (or omit (—sel) labels (Fig-
ure 4.1 (b)). Such training material can be considered iftedéarning Content Selec-
tion logic as it is the input and output of the Content Selecpoocess. The labels will
thus signal, for each piece of data, whether or not the piedata should be selected for
inclusion in the final text. The ideal dataset can be obtathexttly by hand-tagging but
| am interested in a solution without any human interventioither from a knowledge
engineer or annotators. Therefore, | learn from a noisy@ppration obtained from the
natural dataset for the task, in the form of a Text-Knowledgepus (Figure 4.1 (a)),
using thematched textrom the previous chaptérThe Supervised Learning step (Sec-
tion 4.2) will thus search for rules that better accommodiaite training material. The
training material from the biographies domain sketchedhmm previous chapter (Sec-
tion 3.4, discussed at length in Chapter 7, Section 7.1) wilubed to run a number of
experiments, presented in Section 4.3.

Learning from a dataset extracted automatically makes feerg challenging
task. For instance, my approach of analyzing how variatiorike data affect the text

LA trivial label extraction step is necessary to read out &iels from thenatched textalthough it will
not be discussed here.
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(name first) Sean (name first) Sean
(name | ast)  Connery (name | ast)  Connery
(wei ght ) 84Kg (wei ght) 84Kg
(hei ght) 188cm (hei ght) 188cm
U Y
Sean Connery, born (name first) Sean
Thomas Sean Connery (name last)  Conner
in August 25th, 1930 ! y
: . (wei ght ) 84Kg
in Scotland is an actor, hei ght ) 188cm
director and producer. . .. 9
(@) (b)

Figure 4.1: Input to the learning system. (a) Actual inpugetiof associated knowledge
base and text pairs (indirect evidence for learning) (b)yFsipervised input with se-

lected items shown in bold; this is obtained as a byprodutit®processing done by my
system.

(used to build thenatched textsn the previous chapter) is prone to over-generation, as
explained in the limitations chapter, Section 8.2. Thisrayeneration implies that the
rules learned from this dataset will be likely to have lowgis@n.

4.1 Definitions

| will now introduce some definitions | use in the remaindetio$ chapter.

Content Selection. This is the action of choosing the right information to conmaate
in a NLG system, a complex and domain dependent task. Figrehdws an example;
its input is a set of attribute-value pairs, and its outpw subset of the input attribute-
value pairs, determined by the selection labsetd ¢r —sel). The labeled wittsel subset
contains the information that will make up the final, genedatext. Content Selection
can be thought of as a filtering or as a labelling process. Whaught of as a labelling
process, the system will choose between two lalsgKi.e., filter accepts) orsel(i.e.,
filter rejects). The labelling approach allows for a gerieeal Content Selection task,
where each piece of data is assigneshfience score In my work, | will consider a
labelling task with two classes. My approach can be extetol@tcommodate generic
classes as discussed in the Conclusions chapter (Sectjon 9.2
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label data-path value
sel (name —first) “Sean”
sel (nanme — | ast) “Connery”
—sel (wei ght) 84Kg
—-sel (hei ght) 188cm
sel (award — nane) “Oscar”
—-sel (award — namne) “MTV”
sel (relative—type) c-grand-son
sel (relative—name —first) “Dashiel”
—-sel (relative—type) c-step-cousin
—-sel (relative—nane —first) “Jason”
(@)
Sean Connery received an Oscar and has a grand-son, Dashiel ..
(b)

Figure 4.2: Content Selection Example. (a) The input to thet€drSelection module
plus its output (selection labels) (b) Verbalization of #etected attribute-value pairs.

Content Selection rules. The output of my learning system are Content Selection
rules, which base their decision solely on the availablentedge. All rules are func-
tions from a node tdT,F}; that is, they take a node in the knowledge representation
and return true or false. In this way, my Content Selectioeg@ontain decision logic
only for atomic nodes. In this chapter, expressions suchagséce of data to be se-
lected” are formalized as an atomic node in the knowledgeesgmtation graph (of all
types but RREFERENCEtype, see the definitions in the previous chapter). The oecef
whether to include a given piece of data is made solely onitlenglata (no text is avail-
able during generation, as the generation process ismgeaitput text). Sometimes it is
enough only to analyze the value of the atomic node (e.gelltart Oscar from a BAFTA
award). In other cases, however, it is also necessary todbtite surrounding informa-
tion to decide whether or not to include a piece of data. Fanexte, to tell the name of

a cousin from the name of a grand-son (Figure 4.3) or to talcaessful movie (movies
that received a number of awards) from failures. A simptifyassumption involved in

a two level Content Selection approach, as the one presemtiisithesis, is that all
nodes are processed independently during the first Contéettida level. Therefore,
the outcome of the decision about other nodes is not part oem gqode decision. This
simplifying assumption is clearly wrong (in a extreme céfsa piece of information ap-
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c-step-cousin

relative name-first

person-1 » Jason
relative
. e
relative
person-2 name-first o hashiel

Figure 4.3: The value of nodes outside the node being sedlati@y contain in-

formation that governs the selection process. In this ex@ami decide whether
to include “Dashiel” or “Jason,” the type of the relative rfra is important (in the

nomenclature used in this dissertation, that value can besaed through the path
(-name-first -relative type).

pears repeated as two different nodes, the inclusion of ode should prevent the other
node to be included), but Content Selection in context i<kttd by the fitness function
presented in the next chapter.

I mine a different set of rules for each data-class (dath-paimy case). The
impact of the data-class equivalence classes for the gudl€ontent Selection rules is
a subject | am interested in pursuing in further work.

Select-All/Select-None rules. The first type of rules, SLECT-ALL/SELECT-NONE,
addresses the first four rows of Figure 4.2. After analyzimyber of target biogra-
phies in a hypothetical style, it is easy to see that the firdtlast names of the person
being described shoullways be included in the biography. Conversely, his weight or
height shouldhever be included. These rules will select or omit each and evestaice

of a given data-class at the same time (e.g{r €l ati ve person nane-first)is
selected, thetDashiel” and“Jason” will both be selected in Figure 4.2).

Tri-partite rules.  After careful analysis of my training data and experimeatatith
different rule languages, | have settled for rules contajrithree pieces of information

2As my rules apply only to atomic values, no rules will be netfie (r el at i ve person).
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(these rules are applied to an atomic node in the graph, tinesiat node’):

1. Constraints on the current node.
2. Path to a second node (relative to the current node).

3. Constraints on the second nédthe node at the end of the path).

The constraints can be very general (including access tagi@riables or arith-
metic operations on NMERIC nodes), but in my work | have used two simple con-
straints. The first constraint,RUE, always selects the information for inclusion. It is
marked as ‘-’ in my representation of the rules. The secopd tf constraints are con-
straints saying that the value of the node has to belong toad galues. They are marked
as ‘valuec {set’. The tri-partite rules can contain empty paths (denoted)a# which
case there should be no constraints on the second node.

This rule language addresses three types of selection naédsown in the ex-
ample knowledge base with selection labels of Figure 4.2béigin with, it is possible
to express SLECT-ALL/SELECT-NONE rules in this language (first two rules in Fig-
ure 4.4), successfully addressing the first four rows of FagL2.

The next two rows, regarding different awards the persorré@sived make for
a more interesting case, where the information should daded only if it belongs to
a certain set oimportant values. In the celebrities domain, important awards inejud
for example,Oscarsor the Golden Globegmotivating rules such as the third one in
Figure 4.4). Obviously, the relative importance of thealiéint awards is clearly domain
dependent. The case shown in the figure is paradigndii&/ movie awardare seldom
mentioned in target biographies. This omission is to be ebgokaccording to people |
consulted who are interested in celebrities issues. Ngthipriori in the data prepare
you for that result, adTV is a source of authority in the celebrities domain. As the
experiments in Section 4.3 show, my system is able to acthisdype of information.

Finally, for the last four rows in Figure 4.2, the informatito solve the selection
of the name of the relative does not lie on the name itselfrbtite value of another node
that can be reached from the name node: the type of the reldtios fact motivates the
path and the constraints in the other node (as part of thmattite rule). My final goal
has been to be able to express with the rules concepts aseoagthis movie should be
selected if it received an Oscaas shown in the last rule of Figure 4.4.

3Here, “second node” actually denotes a set of nodes, bepaiise can traverse list-valued attributes.
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(person name-first) (- - -). 'SELECT-ALL
Always say the first name of the person being described.

(person eye-col or): (false, -, -). :SELECT-NONE
Never say the eye color of the person being described.

(person award title): (valuee {“Oscar” ,“Golden Globe™}, -,-).
Only mention the name of an award if it is whether a Golden &loban

Oscar.

(person work title): (-(-title -reason title),valuec {“"Oscar”}).
Only mention the title of a movie if the movie received an Gsca

Figure 4.4: Example content selection rules. In the patit | e refers to traversing a
link titl e inthe opposite direction. | employ hard rules instead of pefcentages to
allow for a natural integration with hand-written rulesviesvPablosay this also in the
text

Complex Content Selection Rules. In preliminary investigations (Duboue, 2004), |
presented a variant of my system that targets more compliex thian the tri-partite ones

| have just defined. These rules allow for recursion and amensarized in Figure 4.5.
While this rules are more expressive than the tri-partitesphdiscontinue their use in
favor of the tri-partite rules, as the latter are a more qaistd representation that makes
better use of the training material.

4.2 Supervised Learning

Figure 4.6 illustrates my two-step indirect supervisedriesy approach, divided into
a number of modules. The first step, Dataset Constructiooyséed in the previous
chapter), turns the aligned Text-Knowledge corpus intamning dataset consisting of
knowledge and selected or omitted labels (the Relevant Keoigd). Once the labels
have been elucidated, the Supervised Learning modulerpesfa Genetic Search in the
space of possible rulesets, as described in this section.
| have thus a dataset consisting of classification labeledt,sel, or omitted,

—sel) for each piece of input knowledge. | want to learn that maggfrom concept to
classification label) and capture that information aboatrtrapping using Content Se-
lection rules. This constitutes a case for Supervised liegur he information available
to the learner is thus the frame knowledge representatignafah) plus the labels. This
implies learning from structural information (as compatedearning from flat feature
vectors). To this end, several alternatives are possibtdiding using memory-based
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TRUE() Always select.
I N( list of atomic valueg Select if the value is in the list.

TRAVERSE( path in the graph, rule) Select if the node at the of the path are|se-
lected by the rule.

TRAVERSE- EQX path in the graph) Select if the value of the node at the end of
the path is equal to the value of the current node.

AND( rules) Select if all the rules select the current node.

OR(rules) Select if any of the rules select the current node.

Figure 4.5: Complex Rule language. All rules are of the fdrrmode— {T,F}, that is,
they take a node in the knowledge representation and retugrot false. These rules are
more expressive than their simplified counterpart.

semantic DATASET CONSTRUCTION SUPERVISED LEARNING
inputs @
EEEES-4 CONSTRUCTION
target / MUTATION instance pool
matched ¢ ruleset  yjeset

ruleset

CROSS-OVER ruleset

ruleset

content
* selection
dataset
= ruleset
DATASET > FITNESS
EXTRACTOR > .L: 7 FUNCTION ruleset

A4
content
selection
rules

Figure 4.6: The rule induction system. Timatched textonstruction is described in the
previous chapter.
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Figure 4.7: Rule evaluation. Each rule is executed and ifsubuwwiompared to the auto-
matically obtained reference.

learning, inductive logic programming, combinatorial @ithms and kernel methods
(Washio and Motoda, 2003). Given the high dimensionalityhef decision space over
graphs, | have found it valuable to be able to define a succestance coming frontwo
instances in the search pool, instead of one. This type abaph is known as Genetic
Algorithms (Section 4.2.1). In general, | consider GAs aseaningful way to perform
symbolic learning with statistical methods. To motivateuse | also propose a compatr-
ison to ML classification systems in Section 4.2.2 and to soreaningful baselines in
Section 4.2.3.

4.2.1 Learning Rules

| have input and output pairs of knowledge and laljilsl ), with labels extracted from
the matched text | am interested in finding the rules$ (belonging to the set of all
possible Content Selection rules) such thamaximizes the posterior probability given
the training material:

r* =argmaxP(r|K,L)
r

instead of computing a probability, | use the input and oufairs to compute for each
putative rulesr a likelihood f(r,K,L) that allows me to compare among them. This
likelihood is thus a quality function in the representatgpace. | use the rules)(to
generate from the input knowledde a set of labeld’. The sought quality function
becomes the distance between the training output and tideiped outputj|L —L'||. As
distance, | use the F-measure from Information Retrieval. (TRjs process is sketched
in Figure 4.7.
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With the quality function in hand, finding the ruleSimplies a search process on
the large space of representations. The key ingredient&engtic Algorithms solution
are thefitness function (the quality function mentioned above), tbhperators and the
initial population . | will describe them shortly.

Fitness Function. The fitness function takes a tri-partite ruleand computes its ex-
pected goodness with respect to the training material. @n&ibution of this thesis is
to employ as fitness function thg, measure (weighted f-measure from IR (van Rijs-
bergen, 1979)) of the classification task of recoveringekaion labels on the training
datasets. That is to say, for a given data-class, there anenhar of items in the data-
class to be selected according to the training material.tiifpartite ruler is applied to
the knowledge and the number of correctly selected itemsrbes the rule’s number of
true positives The number of items the rule wrongly selects is its numbéalsk posi-
tives. Finally, the items the rule should have selected but it edsse the rule’s number
of false negatives TheF, then is defined as follows, wheRestands for precision and
R stands for recall:

c (a?2+1)PR
a a?P+R
P — true positives

true positivest false positives
true positives

true positivest false negatives

The fitness function is the key to learning using GAs. In eanersions of my
system the fitness function was too biased towards seleatialgments in the data-class.
The key ingredient for a successful function in my problera been to add information
about thepriors for each class (selected or omitted) in each data-class.furtation
defined above implicitly incorporate these priors (in themds of false positives and
false negatives).

As | wanted to obtain rules with higher recall than precisic@mployeda = 2.0
(recall is doubly as important as precision), as shown if€Tdtb. | added a minimum
description length (MDL) term to the fitness function to al/over-fitting the data (by
memorizing all training instances). The final fitness fumctis then:

F=Fy+MDL

MDL term. To avoid overtraining | use a MDL term as part of the fitnessfiom. The
type of over-training | try to avoid are, for example, caséeremonth-of-birthis always
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selected but | only see all months but June in the trainingerredt There a rule like
(valuee {“Jan” ,“Feb” ,“Mar” ,“Abr” ,“Jul” ,“Aug”, “Sep”, “Oct” ,“Nov” ,“Dec” },
-,-) will accomodate the training material, but (-,-,-)RUE) will also explain it, and
generalize better.

Coming up with this MDL term was much harder that | expectedaasy ehoices
were either too strong and dominated the fitness functionesewoo weak and failed to
avoid over-training completely. | defined the final MDL fuiwet as:

lo _S_

B _ 15 g(t]__s)
MDL = ——1
1+e Pl

Wheret is the total number of items to be selected in the current dass,s is a user-
provided saturation parameter (I used 0.99 in my experisyaee Table 4.5) ands the
length of the rule being evaluated measured in characters.

This MDL term is a heuristic function with the following jutation: it is a
negative value between 0 and -1.0. When combined withth@&hat ranges between
0 and 1.0), the resulting fitness function will range betwekf and 1.0. The MDL
function is a sigmoid with two saturation regions contrdllgy thes parameter. In one
saturation region, the function will evaluate to O (ho MDLnpéty) and in the other it
will evaluate to -1.0 (MDL rejects completely). Outside gauration area, the function
is quasi-linear, with its slope depending on the number lefcsed items to be selected
(data classes with more items to be selected tolerate manplew rules).

The use of MDL to increase generalization capabilities spired by the tree
pruning performed in C4.5 (Quinlan, 1993). The sigmoid fuorcis similar to sigmoid
activation functions for neural networks (Hertz, Kroghddalmer, 1991).

Operators. | have a cross-over operator (Figure 4.8) that takes the ies and com-
bines them into a new one, by following these steps: firstctmstraints in the node are
merged, when merging constraints, there is a 50% chancéhabnstraints are copied
from only one parent (a parent decided proportionally tétitess value). The other 50%
chance goes to 25% chance of picking the union of the constrand a 25% chance of
picking the intersection of the constraints (although ap®rmtersection is promoted to
TRUE). Then it looks at whether the two parents share the same(ihetlsecond entry
in the tri-partite rule) or not. If they share the same pditle, ¢onstraints in the second
node are merged. Otherwise, one parent is selected (agaesdiproportional), and its
path and constraints copied to the child.
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Figure 4.8: Combining two rules. The new rule share some ofcthestraints of its
parents.

While cross-over takes two instances to create the new iostanutation oper-
ations work on an existing instance, producing a new ingtamith a variation of the
original. | investigated three possible variations, dethbelow: growing the existing
instance, shrinking the existing instance, and shufflimgekisting instance.

The grow mutation will, with equal probability, add a new dam value to check
for in the constraints for the node and the node at the encegdath. The shrink mutation
will remove a value from the constraints (if there is any eata remove). Finally, the
shuffle mutation will change the path in the rule with a newhgaken randomly from
the set of all possible paths. The constraint at the end op#tie will also be selected
randomly.

Initial Population. | do not use the genetic algorithm to explore different pathanly
explores the space of constraints over nodes. The pathhagistively enumerated
when building the initial population, until a maximum distz from the node (breath-
first searchdepthin Table 4.5) is reached. To obtain these paths, a compasifgs
created from all training instances. Moreover, the sedactind distribution of atomic
values at each node in the composite graph is also recordwesl diBtribution is used to
create initial constraints for the paths obtained via lird¢ast search. Other areas of the
graph do not contribute to the construction of the initigbplation.

Stopping Criteria. | considered two stopping criteria for the genetic seardie first
one was an overall maximum number of generations. The semieda has to do with
lack of changes in the overall population. When the bestmestdound so far stays the
same for a certain number of generations, the populatioonsidered to have converged
to a maximum.
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4.2.2 Traditional ML

| use Weka (Witten and Frank, 2000), a framework containimgi@ber of supervised
automatic classification algorithms, to provide an altémeasolution to the Content Se-
lection task. Weka machine learning algorithms take astiafixed-size feature-vectors
with fixed types representing the relevant information facleinstance, together with its
target class, in my case select or omit.

My traditional ML module takes the full data for a person,dtger with the se-
lected labels and transforms this information into tragnmaterial for the Weka clas-
sification system. | trained binary classifiers (selectedritted) for each data-path.
The main problem resolved in this module is how to represgmaph-based knowledge
representation using flat feature vectors. My solution i®phoblem is explained below.

Given the highly structured frame knowledge represemaadAG, with values
in the leaves and attributes in the connecting links), t@ioba flat structure it was nec-
essary to create a structure that encompasses all the leasgibt structures, and later
linearize it. | employed the following algorithm to proptisnalize my input graphs:
first, | turned the graph into exactly one tree, by taking anspay tree rooted in the
nodé to be selected or omitted, with maximum depth (normally teetw3 to 6). Each
of these trees could be traversed to obtain a flat vector. Menveneeded to be able to
represent all possible (available) trees in a simple vettdhat vector, a fixed coordinate
has to have the same meaning across trees. For example,delé¢eities domain each
tree represents one person, so | wanted coordinate 89 falyMdtonroe to be “name
of the third cousin” and coordinate 89 for Warren Beaty tcals® “name of the third
cousin.” As different inputs may have defined differentibtires (for example, in the
medical domain a patient may have a kegchycar di a- st art -ti ne while other
may havebr adycar di a- st art -ti ne), and some attributes may be duplicated sev-
eral times (for example, the patient may have had severgksdxdministered during the
surgery, all of them are values for tle ugs- gi ven attribute), | needed a means to
record and fix the possible attributes appearing at everg, rnodether with the possible
number of values (“fan-out”) each of these attributes c&e (@ the case of multiple-
valued keys, likeawar d orr el ati ve). For this purpose, | build anifier tree for all
the training trees. The process of building such a tree issamzed in Figure 4.9.

This unifier is built from training examples. Given enougtifeédm, | expect to be
able to capture all the possible attributes seen in an arpitnput with its corresponding
fan-outs. In the worst case, there will be data in an inputtti@\Weka classifier will not

4This is different from what | did in (Duboue and McKeown, 2@)3where | used an spanning tree
rooted in the person the biography was about. That approgmtivéd the ML from important information
and was thus unsuccessful.



93

=N Unifier
update

—>-Q —»

person

. age
relative 9
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D
relative-1 ... relative—-11 63

Figure 4.9: Computing the most general unifier for a set ofcstied inputs. A unifier
in the process of being computed is updated with a new tree tr€le contains an unseen
attribute @ge) and more elements (11) in an already seen attribugé &t i ve). Both
elements get updated in the unifier.

be able to use for classification, providing suboptimal,gmngsibly adequate, results.

With such a unifier, a flat attribute-vector representatian be obtained by si-
multaneously traversing both the unifier and the tree at hamdlucing default values in
the case of non-existent data in the target tree or the dngwalue otherwise. Finally,
the module automatically assigns types to each coordirfadteemutput vector. | iden-
tify three types: numerical values, strings belonging tonalssubset of possible values
(Weka nominal type, such‘ag” , “mcg” and“g” for units of measurement) and strings
from an open set that receive only one boolean entry reptiagenhether it is defined
or not.

This propositionalization process generated a large nuoflfeatures, e.g., if one
person had a grandmother, then there will be a “grandmotiadmn for every person.
This situation gets more complicated when list-valued eslare taken into considera-
tion. In the biographies domain, an average-sized 10@#ipiography spanned over
500 entries in the feature vector, even after pruning it faries that are invariant in the
training data.

The training vectors can be generated by the procedureibedabove for both
the automatically obtained datasets and the hand-taggdab¢ion set. After training on
in the automatically obtained training material (one dfeessper data-path), the com-
bined system is tested on the unseen test vectors.
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In Section 4.3, | compared the following machine learnirgnteques:

J48. Weka implementation of C4.5 (Quinlan, 1993) decision trees.
NaiveBayes. A naive Bayesian classifier (John and Langley, 1995).

SMO. A sequential minimal optimization for training a supportie (SVM) using a
polynomial kernel (Platt, 1998).

Logistic. Multinomial logistic regression model with a ridge estimrafle Cessie and
van Houwelingen, 1992).

Recent additions to Weka allow for set-valued features, @foihm of the jRip package
(re-implementing the RIPPER algorithm (Cohen, 1996)). Suithtimns would allow to
use parts of paths as features, but they were not availatiie ine of these experiments.

4.2.3 Baselines

As baseline, | use B ECT-ALL/SELECT-NONE rules over the baselin@atched textle-
scribed in the last chapter, Section 3rbatched textsvithout dictionary induction nor
disambiguation). This solution involves counting how méeyns in each data-path ap-
pear as selected in the training material and then choobmgtrategy SLECT-ALL
or SELECT-NONE if the F* for the path is greater than 0.5 (I use thé as a way to
equally balance precision and recall). This algorithm nrmazes the overalF* for the
path-based &LECT-ALL/SELECT-NONE strategy. When mined frommatched textsb-
tained through the Variant 0 system in the previous chafect{on 3.5), they provide a
meaningful baseline for comparison. When mined from Vadanatched text®©uboue
and McKeown, 2003a), they provide a simpler alternativehtorules presented in this
chapter, as they are faster to execute and less prone t@ eoniing from the assem-
blage of thematched text SELECT-ALL/SELECT-NONE rules, however, still require a
good level of post-filtering in later stages (they over-gatequite a bit) and may miss
relevant information.

4.3 Experiments

To shed further light on the relative strengths of the meshaelscribed in this chapter,
| ran a number of experiments. First, | learneeLBCT-ALL/SELECT-NONE rules (Ta-
ble 4.1). I learned the rules from the Variantatched textéSection 3.5) to obtain some
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Table 4.1: &LECT-ALL/SELECT-NONE rules results. The ‘sel’ column contains the
number of selected paths. Rules mined over Variant 4 selest peths which means

a greater recall across the board with a toll on precisiorveNbeless, their overalt*

is better (the differences are statistically significatth@ugh with low confidence, see

Appendix A).

Variant O Variant 4
Corpus P R F* sel P R F* sel
bi ogr aphy. com|| 0.6023| 0.6077| 0.6050| 36 | 0.5785| 0.6616| 0.6173| 55
s9.com 0.3542| 0.4647| 0.4020| 11 | 0.5000| 0.4823| 0.4910| 18
i mdb. com 0.5841| 0.3197| 0.4133| 22| 0.5269| 0.3712| 0.4356| 39
wi ki pedi a. org || 0.8515| 0.1822| 0.3002| 10 || 0.5884| 0.2892| 0.3878| 33

baseline rules. | also learned from Varianiwatched text¢matched textsvith a com-
bination of dictionary induction and external verbalipatidictionary). The table shows
that, while the differences in intrinsic quality reportedhe previous chapter for the two
variants was small (less than two percentual points inRhg it translates in a major
difference in the type of SLECT-ALL/SELECT-NONE rules that can be learned from
them (an extrinsic evaluation). MoreoveEIECT-ALL/SELECT-NONE rules mined on
Variant 4 are a good competitor to tri-partite rules, as @nésd next.

Using again the best availalieatched text§Variant 4), | learned tri-partite rules
per Section 4.2.1 (Figure 4.10 illustrates some of the ridamed). The results over
the four corpora are shown in Table 4.2. These results ingpsgweral points over
the baseline, while all bus9. comimprove over Variant 4 rules. The improvement
is more marked in some corpora than others. For example,ntpeovements over
bi ogr aphy. comare moderate but note that the rules are six points fronfFthef
the training material Thei ki pedi a. or g corpus presents the higher improvement
over the baseline (13 points l*-measure). That illustrates how my learning system
can profit from a larger knowledge pool. The fact tBat ect - Al | / Sel ect - None
rules on Variant 4 for the9. comcorpus perform better than the tri-partite rules over
the same corpus supports the hypothesis tlEaEST-ALL/SELECT-NONE rules are to
be preferred in the presence of high noise.

Appendix A shows that Variant 4 has a high confidence stedikyi significant
difference with the baseline for all corpora butdb. com Inw ki pedi a. or g, the
rules also present good confidence for the difference beieEeECT-ALL/SELECT-
NONE rules and the baseline.

Using thebi ogr aphy. comVariant 4 training material, traditional ML classifi-
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(name first) (-, -, -) TRUE; (nane | ast) (-, -, -) TRUE
Always say first and last names.
(education place country) (valuee {“Scotland”,“England” }, -, -)
As | used U.S. biographies, the country of education is orgyntioned when i
is abroad.
(rel ative #TYPE) (valuec {c-si ster,c-step-father},-,-)
Mention sisters and step-fathers.

(significant-other #TYPE) (valuec {c- husband,c-wi fe}, -, -)
Mention husband and wives (but not necessarily boyfriemidfriends or

—

lovers).

Figure 4.10: Learned rules.

Table 4.2: My system results.

| Corpus | P| R| F*| sell
bi ography. com| 0.5829| 0.7155| 0.6424| 410
s9.com 0.3387| 0.4941| 0.4019| 248
i mdb. com 0.5029| 0.4607| 0.4809| 338
wi ki pedi a. org || 0.5150( 0.3729| 0.4325| 433
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Table 4.3: Machine Learning results. These results suften the relative lack of train-
ing material compared to a large number of features.

| Metric || j48 (C4.5)| Naive Bayes| SMO (SVM) | Logistic |
Precision 0.6790 0.6226 0.6086| 0.6161
Recall 0.4940 0.4940 0.5029| 0.5718
F* 0.5719 0.5509 0.5508| 0.5931

Impact of the f-measure parameter

Precision —+—
Recall ---x---
F-measure ---*---

08 X

0.6 |

04 |

02 |

1 1 1
0 5 10 15 20
F-measure parameter

Figure 4.11: Impact of the F-measure weighting parametahfosupervised learning of
Content Selection rules.

cation systems were trained and tested, following Sectiar24 The results are shown
in Table 4.3. Because all the results are below baseline {0.68ble 4.1), it may be the
case that the unification/spanning-tree approach deskcinb®ection 4.2.2 is generating
too many features for the small training material availableis hypothesis is supported
by the fact that logistic regression is the approach thatsfaetter in Table 4.3.

To further validate my tri-partite rule induction systemrah the system under
different values of ther parameter (Figure 4.11). The figure attests thattiparameter
works as expected, producing rules with a stabtebut varying degrees of precision
and recall controlled by the parameter. The importance of these results cannot be
overlooked, as they show how my approach can be tuned to eaad rules or highly
precise rules, from an automatically obtained trainingamat.

Finally, | tested whether the rules being learned were iffeor not by running
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Table 4.4: Cross-corpus results. Precision and recall scappear next to thé*-
measure. Figures in bold are the best score for that corpus.

Tested Trained on
on bi ogr aphy. com s9.com i mdb. com

bi ogr aphy. com|| 35829 0.6424| 33883 0.2777| 2402 0.5010

s9. com e 0.4600| 23387 0.4019| $4°23 0.3239
i 0.5565 0.2295 0.5029

them across corpora. Table 4.4 showsa33grid obtained by training the system in each
of the three corpora and testing it in each of the three carfvarki pedi a. orgisina
different knowledge representation so it could not be usekig figure clearly illustrates
how the rules learned are different for each corpus. Integy, the rules learned on
bi ogr aphy. comperform better irs 9. comthan the rules learned @9. comthem-
selves. Thenatched text$or s9. comare so noisy that quality ruldsr the domain
learned in a higher quality corpus perform better than ridaming in a very noisy ap-
proximation to the corpus itself. This result encourageswmot now in generating a par-
ticular biography style, but selecting data that adheres toiagraphical domain. That
is, given information about a person, certain informatiarule be more naturally fit to
be included into a biography (it can be selected on the basire diographical domain).
Categorizing information in this way is different from theskatargeted in this thesis,
where a particular style of biographies was sought to be okied. The domain-related
task results in a summarization problem. Adapting my temimito summarization is an
issue | am interested in addressing in future work (Chapt&e8tion 9.2).

4.4 Conclusions

The technique targeting learning Content Selection rulesgted in this chapter is able
to effectively learn rules from the noisyatched textsMoreover, it is noticeable how
the differences between the differenatched texvariants get a boost when used to learn
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Threshold | Description | Value

population,e | Size of the population in the genetic search for Cont000
tent Selection rules.
depth Depth cut-off for the breath-first search building the g
population for the rule search.

a F-measure weighting. 2.0

! Saturation area of théDL sigmoid function. 0.99

Table 4.5: Thresholds and Parameters in the learning of Gb8tdection rules.

Content Selection rules.

An alternative approach using traditional machine leaymrethods suffers from
a data sparsity problem that speaks in favor of techniquesifsgally designed to target
the Content Selection problem.

While the rules mined in this chapter are ready to be used imarg&on system,
as mentioned in the conclusions of the previous chaptarngcessary to model free-text
fields (e.g., “claim to fame”) or facts included in the textt @fi being of extraordinary
nature to make progress beyond the results presented here.
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Chapter 5

Learning of Document Structuring
Schemata

This chapter describes my learning technique to acquireiDeat Structuring schemata
from an aligned Text-Knowledge corpus. As mentioned in Cé&apt my learning has
two steps: an unsupervised step and a supervised step. Shpamised step in this
case involves building thmatched textgper Chapter 3, Section 3.3); and then mining
sequences of atomic values and order constraints (preskeate, Section 5.2). For the
supervised process of learning Document Structuring sateeifbection 5.4), | use a
fitness function based on three items: Content Selectioey @ahstraints and sequence
alignment.

This technique is evaluated in two domains: Medical Reparext( chapter),
where it enjoyed limited success and Biographical Desomgt{Chapter 7) where some
of the problems encountered point to needed improvemestsissed in Chapter 8.

I will now introduce some key concepts used in the rest of¢hiepter.

5.1 Definitions

For learning Document Structuring schemata, | use as imgutligned Text-Knowledge

corpus and a set of communicative predicates. The Text-keunye corpus has already
been introduced in Chapter 3. | will define here the commuiveatredicates. Moreover,

one of the contributions of this dissertation is OpenSch@uiéoue, 2005), a declarative
definition of the Document Structuring schemata, also piteskin this section. These
schemata are compatible with McKeown (1985)’s originalmdgdin, discussed in chap-

ter 2, Section 2.2.1.
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Document Structuring Task. The Document Structuring task takes as input a subset
of the knowledge base (the relevant knowledge pool) andnetusequence of messages
(adocument plap These messages are produced by the predicates defined belo

Communicative Predicates. Each predicate (Figure 5.1) is composed of three items:
variables, properties and output. Each variable has a typeh further constrains the
possible values it can take (an item of that type or subtypengan ontology). These
variables range over frame references. Following KNIGHRGIC and similar sys-
tems, | use domain dependent predicates (instead of McKéb985)rhetorical pred-
icates). | call these predicateesmmunicative predicates, as they hold a good deal of
Domain Communication Knowledge, DCK (Chapter 2, Section ZLBg actual number
and nature of these predicates varies from domain to domaimy implementation
these predicates are defined in a constraint satisfactiomaiem. For the discussion
that follows, a predicate can be considered as a functidrtdkas a number of defined
(and maybe undefined) variables and searches the knowledgesentation for values
of the undefined variables that satisfy the constraintsienghe predicate. If none are
found (or if the provided variables do not satisfy the coaists), the predicate cannot
be instantiated. For each set of valtiisat satisfy its constraints, the predicate produces
amessagdFigure 5.2), a data structure assembled using the vargssignment found
during the search. The messages are the nexus between #émasahd the rest of the
NLG system. A predicate, therefore, can be thought of in¢bigtext as a blueprint for
making messages. In this thesis, | use functional desonpt{FDs) as messages, as |
work with a FUF/SURGE (Elhadad and Robin, 1996) based impl¢atien. The details
of the messages are important because | will later need astteaompare these mes-
sages (the output of the schema) to sequences of atomics\@hae | can read out from
matched tex)s

Document Plan. A document plan is a sequence of messages produced by pgesdica
instantiated from variables ranging over frames in the Kedge representation.

My Declarative Schemata. Given a set of predicates, a schema (Figure 5.3) is a finite
state machine over the language of predicates with variabéeences. All the variables
in the schema arglobal variables, to distinguish them from the predicate varigjtecal

1The predicate returns only one message, if several setsiabl@massignments satisfy the constraints,
they will be iterated upon invocations of the predicate mwiee iteration process is finished —the set of
variable assignments is exhausted— the predicate failsstaritiate. The order of iteration follows the
order they appear in the knowledge base. The hope is thattte ih the knowledge base are ordered
following some natural domain ordering, like time or space.
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pr edi cat e Education

vari abl es
per son . c-person
educati on-event : c-education-event

properties
educati on- event = person. educati on
out put

pred education

predy person

pred; education-event —t eachi ng- agent

pred, education-event —subject-nmatter

start educati on-event —dat e-start
end education-event —dat e- end
place educati on-event —pl ace

reason educati on- event —reason

time
mods

Figure 5.1: Example of a communicative predicate in the faiplgical descriptions do-
main.

pred education

predy person-32

pred; "Col umbi a University"

pred, " Conputer Science"

start "1999/8/27"

mods end "2005/1/17"
place "New York, NY"

Figure 5.2: Example of an instantiated predicate (message)
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variables). At each step during schema instantiation, eentinode is kept and all the
predicates in the edges departing from the current nodenstantiated (via the process
sketched in the previous definition). A focus mechanism (ogndirectly from McKe-
own (1985) and thus described in Chapter 2, Section 2.2.1)heith select the next node
(and add the message to th@cument pla)) situations with 12 or more possible continu-
ations during schema instantiation have been found inipeacthe instantiation process
finishes when no new predicate can be instantiated depdrting the current node.
While the schema itself is simple (an automaton with predieetd variable names on
its edges), the instantiation process is complex becalsesito keep track of free (i.e.,
undefined) and bound variables (predicates bind varigbsesne variables can also be
bound before the instantiation begins —as global argundritee schema, for example,
the person being described in the biography) and focus stéaterestingly, my schema
induction algorithm makes no assumptions on the instaotigirocess, being therefore
independent of the instantiation process or its interntditde(e.g., the local search strat-
egy —focus in my case). This makes for a very knowledge le@nageh with a wider
range of application. However, this complex instantiapioocess forbids using existing
learning techniques for finite state machines (FSMs) talds schemata. This situation
arises as a finite state machine will produce all the strirgsriging to its language. A
schema contains a FSM but will produce a much smaller setiafist only the ones li-
censed by the FSknd the focus mechanism. This situation cannot be overlooKedk i
believe that schemata explain the data we are observindn(tman data), then the only
strings being observed are the ones valid according to thesfmechanism. Therefore,
there will not be enough data to elucidate the original FSMisiyng only FSM-learning
techniques.

5.2 Training Material

To learn Document Structuring schemata, | henetched texteind a set of predicates.
As mentioned in the previous section, a schemata takesarglémnowledge as input
and produces as outpdbcument plansExamples of thesdocument plansvould be
needed to supervisedly learn schemata. dbeument plangiowever, are not readable
from the matched textsas they contain no mention of the rhetorical predicates. For
example, assume there are two predicatascupation and date-of-birth. Both take
two argumentspccupationtakes a person and an occupation date-of-birth takes a
person and a date-of-birth. Then, for the text

20Once variables receive a value, it cannot be changed, eixcyat place where they received the value.
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schema Biographyéel f : c-person)

Personger son<ssel f )+

{Birth(per son «+» sel f )}

{Alias(per son <> sel f )}

((Fathe(sel f <> sel f ,parent <« parent)
|
Mother(sel f <> sel f ,parent <> parent))
Persolfiper son «» sel f )+) x

Educationper son<ssel f )+

(Built(per son <> sel f ;bui It <> built)
appraisalr eason <« bui | t )x) %
Other-Work-Eventfer son<»sel f )*

(Relationshifsel f <> sel f,partner <> partner)
((Child-Mother(f at her <> sel f ,not her < partner child <« child)
I
Child-Fathe(f at her <> part ner ,not her <> sel f child <« child))
Persolfiper son <« chi | d)x*) %

(Relativesel f <> sel f,relative<>relative)
Persolfiper son <> rel ative)x) x
{Deathper son <> sel f )}

Figure 5.3: Example of a biographical description schemae Biography has four

parts. The first part introduces the person, including kddte and place, parents and

education. The second part summarizes work activitiegudieg awards. The third
part talks about relationships on which the person has me@h/ed and children (small
family circle). The last part mentions relatives (extentiedily circle). The braces mean

optionality, the vertical double bar separates altereatiplus and star have their usual

one (or zero) or more repetitions meanings and the doubdsvamply global to local

variable bindings.
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“John Doe is an actor. John Doe was born on 1/1/80.”
generated from the sequence of two instantiated predicates

occupation(per son- 1, occupat i on- 1/ t ype) date-of-birth (per son- 1,
dat e- 1/ nont h, dat e- 1/ day, dat e- 1/ year).

thematched texwill only contain the eight-item sequence of atomic values:

nane- 1/ first name-1/1ast occupation-1/type nane-1/first
name- 1/ | ast date-1/nonth date-1/day date-1/year

but no reference to the predicatascupationanddate-of-birth.

Moreover, thematched textonstruction process has no provisions for anaphoric
expressions. As a result, only the first mention will be t@dyiddentified. Therefore, if
the above example is laid out more naturally as

“John Doe is an actor. Havas born on 1/1/80"
The sequence of atomic values will thus be reduced to

nane- 1/ first name-1/1ast occupation-1/type date-1/nonth
dat e- 1/ day date-1/year

My system does not resolvele” to “John Doe;” so it misses the second mention. That
is to say, thanatched textan reliably provide the placement information foe first
mention of the atomic value in question (in general, first mentioresaways easier to
identify (Jansche, 2003)). The sequences mentioned beldrgcted from thenatched
textwill thus be cleaned for repeated values after the first roar{to ensure compatible
results in cases where second mention were not identified).

To learn the schemata | then focus on three items that cantlkected from the
matched texts:

e Selected knowledge, as employed to learn Content Selecties. r

e Semantic sequences, obtained by looking at the data claksash of the identi-
fied values in thenatched tex(Figure 5.4 (b)).

e Sequences of atomic values, read directly frommntfagched text@Figure 5.4 (a)).

These three elements will be used to implement a fitnessifumict the schemata
space. This function (described in Section 5.4.2) will ndizae the semantic sequences
directly, but will profit fromorder constraints mined over such sequences. These order
constraints are also useful to produce a baseline to coragaisst the learned schemata.
They are the focus of the next section.
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name-24-first-name
name-24-last-name
date-24-year
date-24-»month
date-24-day
name-36-first-name
award-1-title
name-40-first-name
sister-relative-1>TYPE
date-7~year
date-30-year
date-2-+year
date-26-+year
date-36-year
date-27-»year
date-34-year
date-35-+year
date-14-year
date-23-+year
date-16-year
date-1-year
date-12-»year
wn-musician-2-1TYPE
name-18-name

(@)

Figure 5.4: Example of a sequence of first-mention atomiges(a), as read out from a

nane first-nane)
name | ast-nane)

birth date-instant year)

birth date-instant nonth)

birth date-instant day)

family relative name first-nane)

wor k- event award title)

family relative name first-nane)

{

(

{

(

{

(

(

(

(fam |y TYPE)

(wor k- event dat e-i nstant
(wor k- event dat e-i nstant
(wor k- event dat e-i nst ant
(wor k- event dat e-i nstant
(wor k- event dat e-i nst ant
(wor k- event dat e-i nstant
(wor k- event dat e-i nst ant
(wor k- event dat e-i nstant
(wor k- event dat e-i nstant
(wor k- event dat e-i nstant
(wor k- event date-i nstant
(wor k- event dat e-i nstant
(wor k- event dat e-i nst ant
(occupati on TYPE)

(

wor k- event built nane nane)

(b)

matched texaénd its corresponding sequence of data-paths (b).
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plan

NEEEHEEEE

order constraint

Figure 5.5: Fitness function: Constraints.

5.3 Order Constraints

This section describes the mining and usage of order camistraver the placement of
semantic types over text (data-paths as used in this thieig;classes in the general
case). These sequences can be read directly from the téat itaias been matched
against the knowledge representation as in Chapter 3 or ibéa&s hand annotated as
will be presented in the next chapter). As such, they can loednirom annotated texts,
as described in the next section.

The order constraints can be then used to measure howdeabc# giverdocu-
ment planis. For that, a semantic sequence can be read out frordadbement plan
Because the predicates contain no ordering information theeatomic values used to
instantiate them, a technique for approximate matching seguences of sets (each set
representing an instantiated predicate) is discussedaditioBes.3.2.

5.3.1 Learning Order Constraints

As mentioned in the previous section, to learn the ordertcaings, | extract from the
matched texthe sequence of data-classes (data-paths), a sequenteathatsemantic
sequencgin Figure 5.4, from the sequence of atomic values (a), theaséic sequence
is (b)). | base my unsupervised learning algorithm on temies used in computational
genomics (Durbin et al., 1998), where patterns represgmi@aningful biological fea-
tures are discovered from large amounts of seemingly unargd genetic sequences.
In my application, | search for patterns that occur repdgtadross multiple semantic
sequences. By learning ordering constraints over theseeaksm produce constraints
that allow later selection of the schema that better explé#ue training material. My
system uses combinatorial pattern matching (Rigoutsos &rdtbs, 1998) combined
with clustering to learn patterns. Subsequently, it agpdi@tistical procedures to learn
ordering constraints among these clusters of patterns.

The algorithm can be sketched as follows: | applied combnmeit pattern dis-
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covery (detailed in the next section) to the semantic sexpgenThe obtained patterns
are refined through clustering. Counting procedures areubked to estimate order con-
straints between the clusters.

Pattern Detection. Pattern discovery techniques are often used for informasidrac-
tion (e.g., (Riloff, 1993; Fisher et al., 1995)), but most Wwarses data that contains
patterns labelled with the semantic slot the pattern fillse® the difficulty for humans
in finding patterns systematically in my data, | needed uestped techniques such as
those developed in computational genomics, where pattéithe type | need are called
motifs

As explained by Hudak and McClure (1999), motif detectionsisally addressed
with alignment techniques (as mentioned by Durbin et al98Por with combinatorial
pattern discovery techniques such as the ones | use here.iGoral pattern discov-
ery is more appropriate for my task because it allows for matcacross patterns with
permutations, for representation of wild cards and for usemaller data sets.

I will now provide a brief explanation of my pattern discoyenethodology. The
explanation builds on the definitions below:

(L,W) pattern. Given thatX represents the data-paths alphabet, a pattern is a string
of the formX (Z]?)" 2, where ? representsdon't care (wild-card) position. The
(L,W) parameters are used to further control the amount and pkteaf the
don’t cares in every subsequence of length at leastL positions must be filled
(i.e., they are non-wild-cards characters). This definigmtails thalL. < W and
also that &L, W) pattern is also &, W + 1) pattern, etc.

Support. The support of patterp given a set of sequenc8ss the number of sequences
that contain at least one matchpflt indicates how useful a pattern is in a certain
environment.

Specificity. A partial order relation on the pattern space can be definddllasvs: a
patternp is said to be more specific than a patterifi: (1) p is equal toq in the
defined positions od] but has fewer undefined (i.e., wild-cards) positions; or2)
is a substring op. Specificity provides a notion of complexity of a pattern (o
specific patterns are more complex). See Figure 5.6 for amgbea

Using the previous definitions, the algorithm reduces topttedlem of, given a set of
sequences, integeksandW, a minimum window size, and support thresholgfinding
maximal(L, W)-patterns with at least a supportafpport thresholdMy implementation
can be sketched as follows:
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ABC??DF .
€SS Specl IC tham
ABCAZDE— “ABC?7DEG

Figure 5.6: The specificity relation among patterns.

A|B|C|D|E|F| « subsequence

AB?DEF- ... “ABCD?F ¢ patterns

Figure 5.7: The process of generalizing an existing sulessopl

Scanning. For a given window siz@, | identify all the possible subsequences (ire.,
grams) occurring in the training set. | repeat this procesdlifferent window
sizes.

Generalizing. For each of the identified subsequences, patterns are@i®ateplacing
valid positions (i.e., any place but the first and last pos#) with wild-cards. Only
(L,W) patterns with support greater thampport thresholddescribed in Table 5.1
are kept. Figure 5.7 shows an example.

Filtering. The above process is repeated increasing the window sidenornpatterns
with enough support are found. The list of identified pattaemthen filtered ac-
cording to specificity: given two patterns in the list, onetioém more specific
than the other, if both match in exactly the same positiopsihe the less specific
one, as it adds no new information. This gives us the lighakimal motifs (i.e.
patterns) which are supported by the training data.

Clustering. After the detection of patterns is finished, the number ofgoas is rela-
tively large. Moreover, as they have fixed length, they tendd pretty similar. In fact,
many tend to have their support from the same subsequentls oorpus. As | was

3See Rigoutsos and Floratos (1998) for details on the ogtiyralthis technique.
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interested in similarity in form as well as similarity in demst, a convenient solution was
to further cluster the patterns, according toagproximate matching distance measure
among patterns.

An approximate matching measures defined for a given extended pattern. The
extended pattern is represented as a sequence of setsddafgiBons have a singleton
set, while wild-card positions contain the non-zero prolitgtelements in theirdon't
care model. Considep to be such a patterrg a sequence anadl an offset overS, the
approximate matching is defined by

) MNP match(p[i], Sii + o])
M(p,0,9) = =2 length(p)

where the matdt, e) function is defined as 0 &< P, 1 otherwise, and wheris the set

at positioni in the extended pattenpande is an element of the sequenSeThis mea-
sure falls in the interval0, 1]. Using this function, | defined the approximate matching
distance measure (one way) between a paterand a patterrp, as the sum (averaged
over the length of the offset list gf;) of all the approximate matching measureggf
over the offset list ofp;. This is, again, a real number [0,1]. To ensure symmetry,

| defined the distance betwega and p, as the average between the one way distance
betweenp; andp, and betweerm, and p;.

This metric provides an approximate measure of how well argpattern does
match in the contexts where other pattern matches, if trggnadi pattern is “forced” to
match there. If two patterns are fully compatible, this neetrill give a score of 1.0. If
they are completely incompatible, it will give a score of.0.0

| used agglomerative clustering with the distance betwégsters defined as the
maximum pairwise distance between elements of the twoersisClustering stops when
no inter-cluster distance falls below a user-defined tholeshAn example is shown in
Figure 5.8.

Constraints Inference. The last step of my algorithm measures the frequencies of all
possible order constraints among pairs of clusters andiateatues, retaining those
that occur often enough to be considered important, acogridi a relevancy measure.
The algorithm proceeds as follows: a table counting how niangs a pair of patterns
belonging to particular clusters or atomic values are nmetcnd appear in a particular
order is built. From there, | use Shaw and Hatzivassilogl@99) approach (discussed
in the Related Work chapter, Section 2.3, repeated heredatyl

In the table of counts, therefore, the entry at positignindicates the number
of times in the corpus the objectame before the obje¢t From the table, | can try to
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operation 11.11%
. . dri 33.33% .
intraop-problems intraop-problems anp ’ drip
intraop-problems 33.33%
total-meds-anesthetics ~ 22.22%
operation 14.29%
intraop-problems drip 14.29% drip drip
intraop-problems 42.86%
total-meds-anesthetics ~ 28.58%
operation 20.00%
intraop-problems intraop-problems drip 20.00% drip  drip
intraop-problems 20.00%
total-meds-anesthetics ~ 40.00%

Figure 5.8: Cluster and patterns example. Each line cornelgpdo a differ-
ent pattern. The elements between braces are don't cardiopssithree pat-
terns conform this cluster: intraop-problems intraop-problems ? drip, intraop-problems ? drip drip and
intraop-problems intraop-problems drip drip the don’t care model shown in each brace must sum up to
1 but there is a strong overlap between patterns —the main reason foriolg)ste

reject the null hypothesis thatj came in any order (equivalent to say that the probability
of i coming beforej is 0.5). The following formula will compute the probabiliof the
observed frequencies:

n

> (» 05"

k=m
wheremis the total number of timeshas been seen occurring befgra the corpus and
n is total number of timegs and j occur in a pair. | thus use the above equation with a
thresholdhryc (Table 5.1) to select “likely enough” constraints.

5.3.2 Using Order Constraints

| will describe in this section how order constraints can beduto evaluate a schema
being constructed or as a stand-alone planning mechanigrfirdt | will explain how to
evaluate the constraints themselves.

Evaluating Order Constraints

| evaluated two items: how effectitghe patterns and constraints learned were in an
unseen test set and how accuratél report thenumber of patterns, clusters and con-
straints learned during training. These figures are the upper bound fontimaber of

4Patterns and constraints that cannot be applied in the niteseset are of no real use
SConstraints that do not hold in the unseen test set are amesiavrong.
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patterns, clusters and constraints foundon unseen, held-out sequences. The number
of constraints found is particularly important as only doaisits found on the held-out
sequences can be evaluated whether they hold or not. If éweeya specific constraint

is found on a held-out sequence it is the case that the cortsti@es hold, | will call
that constraint avalid constraint. | therefore report threumber of valid constraints.

If there are some sequences where the constraint holds amelabers where the con-
straint does not hold, | look at how many times each case masppk the number of
positive sequences is greater than the number of negativesees, | will call it anixed
constraint, otherwise | will call it aimvalid constrain® | thus report also theumber

of mixed andinvalid constraints.

Order Constraints as a Schemata Quality (Fitness) Function

Given adocument plana sequence of multi-sétsan be extracted from it by recording
the data-classes (semantic tags) for each piece of dath.nkessage, therefore, will cor-
respond to a multi-set. The order of the multi-sets is givethle order of the messages in
thedocument planSemantic tags coming from repeated atomic values are resradter
the first mention (as my technique only works with first memsipbut several semantic
tags can appear if they come from different atomic values.

To use these order constraints, therefore, it is necessaextend the pattern
matching to the sequence of sets of atomic vakligg by means of the algorithm shown
in Figure 5.9. The constraints are then checked by keepaul of whether or not the
patterns in the cluster hold over thget. The constraints are counted (or discounted, if
they are violated) weighted by the probability mined pertteacs.3. If a constraint does
not apply, it is considered it had at least one mismatch @onote schemata that contain
structure similar to the one fostered by the constraints).

Example:

The patterrAAB?D when matched againgtA,B,D}, {A D, E}] will align AAB?
to {A,A,B,D} andD to {A,D,D}.8

6An alternative way to define invalid constraints is to definen as constraints that never hold, but
such definition produced no invalid constraints in my experits. The definition above is preferred, as it
is more informative.

"Multi-sets, also known as bags, are sets that allow for tegeslements.

8As explained above, the elements extracted from each tedice multi-sets, that is, sets that accept
repeated elements.
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FUNCTION matcheattern p, int pos pattern seq of setSsey, int possetsef
bool

IF pos patternis the first position in the patteq@ THEN

take the set gpbos setseq
ForRk FROM 1 To the size of the set D

if the firstk elements op (including don’t care po-
sitions) belong to the set recurse pos setseg- 1
and pos pattern+k

DONE

IF any of these recursive call is successfulEN RETURN
true

ELSE RETURN false

ELSE IF pos patternis not the first position in the patte THEN

IF the set at positiopos setseqof sizek) matches the first
k elements of the pattenm(including wild-cards) HEN
recurse orpos pattern+ k and posetseqt 1 (IF there are
more elements left in the pattern,. & RETURN true).

ELSE IF the firstk elements do not match,HEN RETURN
false Fi

Fi

Figure 5.9: Checking a pattern over a sequence of sets of at@tuies.
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Order Constraints as a Stand-alone Planning Mechanism

The order constraints can be used directly to plan texts bippeing a search on the
space oflocument planfr some input data and selecting the document plan thag¢scor
better for the fitness function described in the previousi@ecThis alternative was not
explored in this thesis.

5.4 Supervised Learning

The supervised step for learning Document Structuringrselt@ follows the guidelines
of Chapter 3 and is thus similar to the learning Content Selectiles counterpart pre-
sented in the previous chapter. It learns Document Strnctfischemata from pairs of
relevant knowledge (input to the Document Structuring niedand sequences of atomic
values and order constraints (an approximation tadih@iment planghe output of the
Document Structuring schemata). Training on examplesmitiand output pairs made
for a supervised learning setting. The algorithm keepsldinaés a set of schemata
found to be the best solution so far. In each step of the searphrcentage of the less
promising solutions is discarded and operators are apphdgbe remaining schemata
to obtain new solutions. Two type of operators are defimadtations(that produce a
new schema by modifying an old one) aciss-over(that produces a new schema by
combining two existing ones, its ‘parents’).

This process (a particular instantiation of a genetic $gdscrepeated a number
of times with the goal of obtaining a schema that explainstthming data well. The
key element for this situation to arise is to tell in a seresibhy good schemata from bad
ones, by means of a fithess function.

A main contribution of my work is the use of a combination afth corpus-based
fitness functions. The schema being evaluated is executegahof knowledge and a set
of document planare collected and scored using these fitness functionseTaestions
address the goodness of the schema at the Content Seleggband at coarse and fine
structuring levels. The coarse structuring level uses gnojimate evaluation function,
Fc, which determines whether order constraints (I use thetmings acquired in the
previous section) are met in the currelaicument plansThese constraints relate sets of
patterns by specifying strict restrictions on their refagplacements. The fine structuring
fithess function will compare the obtainddcument planso the sequences of atomic
values mined from thenatched texts

On the outside, my problem is that of learning a finite stateraaton. This com-
plex problem has been studied in the past and a number of@®utave been proposed
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for it (Zhou and Grefenstette, 1986; Dupont, 1994; Belz, 2000stead of devising a
brand new solution to this problem, an issue outside of thpesof this thesis, | decided
to adapt a recently proposed technique Gametic Automaton Learner, GAllo my task.

5.4.1 GAL (Genetic Automaton Learner)

GAL (Belz, 2000) targets learning finite-state automata thagigaize over a given train-
ing set of positive examples. Clearly, the goals@AL are different from schemata
induction because schemata instantiation does not focudetarmining the language
the automaton accepts but instead cares about the stepsddlby the automaton (the
schema) as these steps provide the structure for the dotbeieg created. That is, the
schemata add to the automaton the focus mechanism desariSettion 5.1. Never-
theless, both problems involve learning a finite-stateraaton. | thus adagBAL to my
task by usingsAL's selection mechanism, an extensiorGAL’s instance representation
(over a language of predicates plus variabl€)'s cross-over and mutation operators,
initial population and stopping criteria. My fitness furctiis then my major contribu-
tion (note that, for the differences described bef@@L's fithess function would not
apply to my problem).

GAL’s instance representation. GAL instance representation is a linearization of the
transition matrix of the automaton. That is, every instasa@n array of integers of vari-
able size (each instance can have a different number okgtatée first integer is the
number of states in the automatenGAL assumes that ath symbols in the language are
known beforehand (I also assume that communicative predi@and their variables, are
given beforehand). The transition matrix i&& m matrix with states as rows and sym-
bols (predicates) as columns. The integer at positggrsym is the state where a link
from statesy will land while producingsymas output, or -1 if there is no link leaving
S producingsym To be able to apply GAL, | need to fix the total number of sym-
bols beforehand, which in turn implies fixing the number ofiafales that can appear
in a schema. To this end, | use a global paramejgfTable 5.1) that says the num-
ber of variablegper type the system can use in the search. For example, the predicate
Educat i on shown in Figure 5.1 has two variables, one of tgpper son and the other

of typec- educat i on- event . If ny equals 3, then the automaton can asper son- 0,

c- person-1, c-person-2, c-educati on-event -0, c- educat i on-event -1 and

c- educati on- event - 2 as global variables in the schema. Rgrequal to 2, the pred-
icateEducat i on will span 8 symbols:
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state H Al,*l ‘ Afl,O ‘
1 N -
2 N -
3 N - - N - - - - - - - B

Figure 5.10: Example of GAL's instance representation ap@daptation to the learning
schema through the use of predicates plus variables as symlvothe example, the
schema is defined over two predicates. The first one has tviables and the second
has one variable. The maximum number of variables per tggeq 2 in this case. A

value of -1 indicates the local variable is not bounded toglopal variable.

Education(),

Educati on(c- person-0),

Educati on(c-educati on-event -0),

Educati on(c-person-0, c-education-event-0),
Educati on(c-person-0, c-education-event-1)
Educati on(c- person-1),

Educati on(c-person-1, c-education-event-0),
Educati on(c-person-1, c-education-event-1).

An example of the representation is shown in Figure 5.10. B¥©0) experimentally
motivates the states in the rows and symbols in the colunpresentation (over states
on rows and columns, for example) on the basis that more mgtuhiinformation can
be transfered from parents to children in the GA.

GAL'’s selection mechanism. GAL uses a torus to store the instances (a table that
wraps around on the borders). In each step of the search,iresteimce may have a
cross-over with randomly selected neighbors (among thiet @idjacent neighbors of a
cell in the torus). If the fitness of the child is better thae tharent, it replaces the
parent. Alternatively, the instance can be mutated (inkstédathe cross-over). Again,



117

only a fitter instance will remain. This selection mechansows down the advance
of fitter instances into the pool, allowing a search on sdvmaes of the error surface
simultaneously, without quickly getting stuck into locaimma.

GAL’s cross-over operator. GAL introduces the FPLeross-over (fithess proportional
uniform cross-over) where a percentage (dictated by tledative differences in fitness)
of the transition table from each parent is copied into thkdchFPU_cross-over is a

general GA operator, with a number of experiments justgyits advantages for the
learning of automaton case.

GAL’s mutation operator. GAL mutation operator will flip positions in the transition
matrix, respecting the number of states and depending oe panameters.

Stopping criteria. | use as stopping criteria reaching a maximum number of gener
tions.

Initial population.  The initial population is created by randomly choosing a ham
of states and variables and mutating every position in boghtriansition and variables
matrices.

5.4.2 Fitness Function

To tell good schema from bad ones implies in this case difteagng how well a pro-
posed schema explains the training data. That is, a funttadtrapproximates the condi-
tional probability of the schem@&given the texfl and knowledgé:

P(ST,K)

Actually, as | am searching for the best scheri§g (hat maximizes this probability, |
change my definition of the problem to use a likelihood:

S" = argmaxP(ST,K) = argmax- (S T,K)
S s

FromT andK, | can compute the relevant knowledge p&6l a set of order con-
straints%” and the sequence of atomic valles an unsupervised manner, as described
in the previous section. Mfitness functior(similar to a likelihood in the context of a
stochastic search) will thus be defined as:
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S = argmax- (S K',¢,%)
S

The hope is tha&* andS will be the same or very close. To compute the function
F(SK',%,Z), | use the following heuristic definition, where | divide tfimess function
into three additive componentd, are thedocument planandZs; are the sequences of
sets of atomic values derived frobn(in a process detailed below):

D = instantiatdSK’)
Zset = extrac(D)

F(SK',%,Z) = wche(K',Zset) + woFo (€, Zset) + WaFA(Z, Zset)

An important point to note here is that each of these three déiee data-dependent
as they analyze the goodness or badnessitgut document plans,D.e., sequences of
communicative predicates. They require instantiatingtiieema multiple times for each
of the different knowledge set§'. Thedocument plans @re sequences of messages as
the ones shown in Figure 5.2. These messages contain atalngsvthat can be ex-
tracted from them. However, the atomic values inside a ngessae unordered (the
order is given later by the surface realizer). Tdwractfunction will keep them un-
ordered, returning a sequence of sajs, where each set represents all the atomic values
contained in a message (as a set so no assumptions are madespict to their order-
ing). To make them compatible with sequence of first mentienery repeated value is
removed from the sets (i.e., also contain only first menjiohsombine the three func-
tions with weightsw, on the basis that, for example, a schema with great ordérhg
some mis-selections should not be discarded.

| will now analyze each tier in turn.

First Tier. The functionfkc(K’, Zset) measures the Content Selection in place (as op-
posed to the previous chapter, where no context was takeragtount). The selected
atomic values are extracted from the sequence of Zgtsand theFg is then theFy
measure described in the previous chapter, ugirgl (precision is now considered as
important as recall).

Second Tier. The second tierfo, uses the order constraints mined over sequence of
atomic values as described in Section 5.3.2.

Third Tier. The last component of the fitness function is its most intargssub-
function and the main contribution of my work. It compares gequence of atomic
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valuesZ with the sequence of sets of atomic valigg; (coming from the messages) by
means of an alignment-based metric efficiently computeagudynamic programming.

This function scores how well the sequence of a set of atoalioes> se; can be
mapped into the sequence of atomic valkie$his mapping is by virtue of non-crossing
alignments between atomic values and sets of atomic valles non-crossing property
penalizes changes in ordering (i.e., when aligirg§-C andC—B-A they will align both
Bs but neithe’A nor C°) while enabling the use of dynamic programming, thus making
this computation very efficient.

My dynamic programming is similar to global alignment witifize gap penalty,
the Needleman—Wunsch algorithm in bioinformatics, as @efiny Durbin et al. (1998)
(pages 17-28). The dynamic programming is governed by tl@iog recurrences:

T(i—1,j)if T(i—1,])was amismatch (skip)
T@,j)=maxx T(i—-1,j—1) (match) 3 +c(i,j)
T(,j—1) (stay)

wherec(i, j) is the comparison between a set of atomic valsies positioni and an
atomic valuev at positionj, it equals to 1 if the value is in the set and -1 otherwise:

c(i,j):{ 1 if\/v;ss

These recurrences can be understood as follows: at any timenduring the
alignment process, the alignment of the set of atomic vatig®sitioni (coming from
the message) against the atomic value at posjtequals the maximum of three possible
values. The first value is that of an alignment skipping thevjous set of atomic values
(askip). This option is only possible if the previous set of atomaues mismatched the
atomic value (otherwise an atomic value will be double cedht Another possibility is
that the previous atomic value matched successfully to teeigqus message faatch).
Finally, several atomic values may be aligned to the samefssgbmic values (thstay).

In either case, the value of the alignment at that point isthefatomic value belongs to
the set or -1 otherwise.

Example:

Alignment of [A,B,C,D,E,F,G| against{B,C,D},{E,A},{C,B},{AF}]. The
dynamic programming matrix will be:

9Another possibility is for they to align only th&s or theCs. The outcome really depends on the score
of aligning correctly any of them.
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A|B|C|D|E|F]|G

{B;C,D} [ -%0+142/1] 0]-1
EA [o[-1[ 0] 1T3] 2] 1
{CB} |-1] 1] 2] 1|2} 2] 1
{AF} JoJo] 1] 1] 1342

The alignment reads:

ABCD| E | FG
{B,.C,D} | {E,A} | {AF}

Analysis. This fitness function so defined has a number of advantagest, thie de-
gree of generalization in the schemata can be achieved tictieg) the number of nodes
available for the automata (to avoid memorizing the trajmmaterial). Second, the incor-
poration of a Content Selection tiEg allows for a two level Content Selection learning
where the fine grain Content Selection is performed in-plddet is the case because
a complete Content Selection system can only be evaluatedtlowelocument plan
as a result of the inclusion of intermediate informatiorldeing cohesion principles.
Therefore, while the Content Selection rules mined in theiptes chapter are of coarse
granularity, fine Content Selection granularity can be @dpiat the schemata level. An
important point to note here is that all three functions atadlependent, as they analyze
the goodness or badnessin$tantiatedschemata. An advantage of the functiggs is
that while an aligned corpus is needed to collect the coinssrd consider the constraints
to be valid for any knowledge so the constraints can be clieckea much larger range
of semantic input$® not only the ones used to mine the constraints. Whileneasures
content with no ordering any, measures ordering in a very strict fashiép,is some-
what in between. The contribution B§ is expected to be greater in earlier stages of the
search, where the schema is producing results of too lowtgualbe fully evaluated
using alignments. For example, let's suppose the systemyiigytto learnABCD and

it is currently producingCDAB. Non-crossing alignments will be able to see tA&tis
correctly placed oD is correct, but not both. For the sake of discussion, letsisa

aligns correcthCD:
g x AB CD ——

—— CD AB

This alignment misses the important fact tA&is in the right order, that is, it will score
CDABthe same a€DBA Order constraints remedy that situation, allowing theesys
to reward differently instances that produce promisingsedpuences.

10An approach I didn't implement in the current set of experitse
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Figure 5.11: Fitness function: Alignment architecture.

Finally, texts governed by DCK are supposed tdstorically motivated, in the
sense that their current shape does not necessarily obepginybehind it, but there
is a history of logically motivated changes that determisecurrent, accepted shape.
Therefore, it may be the case that genetic algorithmssganlate that previous history.

5.5 Variants

| have investigated possible variations to the processritbestin this chapter (Duboue
and McKeown, 2002). In particular, for the experiments mnimedical domain discussed
in the next chapter, | did not have enough data to perform aopervised step. Instead,
a laborious manual tagging transformed the text side of t-Knowledge corpus in
a sequence of message-types (semantic tags). Howevepydlisss could only be per-
formed for a small number of texts. | succeeded in applyindgaenkinique in this different
setting, with the following modifications:

Simpler schema. In this context, | targeted learning the schema-like plasrds-
cussed in the Related Work chapter, Section 2.2.1. Thesagisam@re schemata con-
taining only sequence nodes and where each predicate hasas$tar node preceding
it.

No Content Selection. The data that should appear in the text was already selected.
Moreover, the simpler schema did not allow for any Contené&ein logic to be added
to it. In a sense, it was using no focus decoding (greedy degnd



122

Manual mapping of predicates to message types.The tag-set used by the tagging
crew was developed by a domain expert and did not correspiogctlg to the system’s
ontology, nor the existing schema predicates. | manuallgped one onto the other.

Text-to-text comparison. The most innovative variation was the use of a text-to-text
comparison between generated text and the text part of thteKFewledge corpora. For
computing the fitness function, | introduced the multipérs approach described in this
chapter, where the knowledge is used to prodimaiment planthat are then scored for
goodness. | scored them using order constraints in the sameof/the second tier of
the fitness functions described in this chapter. From thexwever, it was impossible to
continue at thelocument plarevel: the tagged texts did not contain information about
the parameters that instantiated the predicate, onlypts(g.g., | knew that aanesthesia
predicate has been instantiated, but I lacked the infoonati which drug was given, and
in which quantity —the parameters of taeesthesigredicate). The tagging crew did
not annotate this information because it was present inetktanside the tag. To solve
this problem, | employed the anchdrgpothesis of my researthand used the existing
text generator to produce full verbalizations of ttecument plangFigure 5.11). | then
compare the generated text against the text from the Temtiéuge corpus using a
dynamic programming based function similar to the one dlesdrfor the third tier of
the fitness function presented in this chapter (but opegatirthe word level instead of
the conceptual level). As substitution metric, | employled information content on a
corpus of related discoursé.

5.6 Evaluation Methods

| evaluate the learned schemata by using hand tagged reéesmmguences of atomic
values and computing the Kendallis(Lebanon and Lafferty, 2002) as employed by
Lapata (2003):

2(number of inversion

=1 NC D 2

WhereN is the number of objects (atomic values) and inversionsasitimber of
exchanges on consecutive objects required to put them rtlez appearing in the hand
tagged reference. Because the sequence being evaluateehgemse of sets of atomic

From Chapter 1, Research Hypothesis, Section 1.2.
12As computed by Pan and McKeown (1999).
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Threshold | Description | Value
Minimum number of sequences a pattern shquld

support threshold Match to be further considered (this threshold is |ex3g,
pressed as percentage of the total number of| se-
guences).

throce Probability threshold for a given order constraint{top .98
be further considered.

My Number of variables per type. 2

windowsize How many items are used to build a pattern. 8

relative distance _ o _ 0.1

threshold Clustering parameter when mining order constraints. -

probability Minimum probability for accepting a learned cop- .99

cut-point straint.

Table 5.1: Thresholds and Parameters in the Document 8tigtschemata learning.

values, for the sake of evaluation | consider the items ;@ set are ordered in the

correct order.

5.7 Conclusion

A schemaiis a highly structured representation, consistihgn of a finite state machine,
a set of rhetorical predicates and a focus decoder. Theitpehpresented in this chapter
targets the learning of the finite state machine given a seheaibrical predicates and
McKeown (1985)’s original focus decoding. The next two dieap present the results of
applying this technique to two domains, medical and bioliegl. These chapters stress
the contributions of the proposed fitness function and therngiof order constraints.
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Chapter 6

Experiments in the Medical Domain

This chapter describes my contributions to the MAGIC pro{Palal et al., 1996; McK-
eown et al., 2000%; this project built a generation system that produced bisfiof
patient status after a coronary bypass surgery. Normal-fowkin the hospital requires
a medical specialist to give a briefing to the Intensive Caré burses and residents
before the patient arrives at the ICU. This briefing is giverohg of the residents who
was present in the operating room. The generation systesdada collected from the
machines in the operating room to generate a coordinatezts@nd graphics replace-
ment presentation for the briefing, avoiding distractingaeegiver at a time when they
are critically needed for patient care. Figure 6.1 showsxamgle of a data excerpt (a
CLASSIC data file with 127 facts on average) and generate ptatson.

For evaluation purposes, McKeown et al. (2000) collected @anscribed 24
briefings that then were used, along with the admission rilogegold standard), to quan-
tify the quality of MAGIC output (100% precision, 78% regalEach report transcription
was subsequently annotated with semantic tags as showgure.2, on page 127.

When comparing the system output and the briefings, it candsetbat there are
quite a few differences among them. In particular, the brgsfiare normally occurring
speech. Aside from being much more colorful than the systatipu, they also include a
considerable amount of information not present in our séimarput. And there is also
some information present in the system that is not beingtsaile doctors, for example,
because at the time the briefing is given, data such as the ofaime patient is available
in paper format to the target audience.

The transcripts and the semantic inputs constitute an edigrext-Knowledge
corpus, albeit a very small one. The experiments in this temaudress the Document

IMAGIC, Multimedia Abstract Generation for Intensive Camas a joint project between the
Columbia Presbyterian Medical Hospital and the Columbia&hsity Computer Science Department.
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Structuring schemata part of this thesis, with modificagitindeal with the small amount
of data. My task was to learn a tree representing a plannepéréorms as well as the
planner developed manually for MAGIC. To remedy the lack airing material, more
human effort was employed. The fitness function discusséaemrevious chapter had
three components: Content Selection, order constraintalggiiments. In MAGIC, the
planner makes no Content Selection decisions, thereforir#faier is not used in the
MAGIC domain. For the other two tiers, the obvious choice lddwave been to assemble
thematched textby hand. This option, however, was utterly laborious. A denpask
in the form of semantic tagging was preferfeVhile the semantically tagged texts are
a weaker source of information than thratched texisin this case they are of pristine
quality, as they were hand-built. The tagged texts provataamntic sequences to mine
order constraints as discussed in the previous chaptetigS8&c3).

For the third tier, | had available the full-fledged MAGIC s3%. | combined the
verbalize-and-searchrocess from Chapter 3 with an alignment-based metric sinala
the one presented in Chapter 5. For this combined metric, h&IKa system produces
a text presentation for the outputdcument plapof the schemata being evaluated and
then the text presentation is fed into an alignment basedemeiw at the text levet. |
thus align human text against the generated text.

In this chapter, | first introduce the data (Section 6.1), #reh two series of
experiments: learning order constraints (Section 6.2)leadhing MAGIC schema-like
planners (Section 6.3).

6.1 Data

In the aforementioned evaluatiériyicKeown et al. equipped the resident with a wear-
able tape recorder to tape the briefings, which they trapsdrio provide the base of the
empirical data used in this chapter. They subsequentlytatetthe text with semantic
tags as shown in Figure 6.2. The figure shows that each seniesplit into several
semantically tagged chunks. They developed the tag-skitigtassistance of a domain
expert in order to capture the different information tygest tare important for commu-
nication in this domain. Two non-experts did the taggingerameasuring acceptable
agreement levels with the domain expert (McKeown et al. 0200 he tag-set totalled

2This is apost-hocanalysis; the texts were semantically tagged for the saitliation before | started
my experiments.

3This metric imposes the requirement of having a generagistem able to verbalizéocument plans
before being able to learn the planner. That requiremerdtipmresent in the technique | present in the next
chapter.

4] was not part of the evaluation efforts.
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(patient-info-12865, c-patient, (a-age, age-12865), (a-nane,
nane- 12865), (a-gender, gender-12865), (a-birth-date, ...), ...,
(r-receive-bl ood- product, received-Bl oodProduct1-12865), ...)
(age- 12865, c-neasurenent, (a-value, 38), (a-unit, "year")) maps tg
sentence 1 (b)

(ht-12865, c-neasurenent, (a-value, 175), (a-unitm "centineter"))
maps to sentence 1 (b)

(nane- 12865, c-nane, (a-first-name, "John"), (a-last-nanme, "Doe"))
maps to sentence 1 (b)

(recei ved- Bl oodProduct 1- 12865, c-receive-bl ood-product, (r-arg2,
Bl oodPr ocut 1- 12865), (a-dosage, Measure-Bl oodProduct 1-12865)) maps
to sentence 5 to last (b)

(Bl oodPr oduct 1- 12865, c-bl ood- product, (a-nane, ‘‘Cell Savers’’))
maps to sentence 5 to last (b)

(Measur e- Bl oodPr oduct 1- 12865, c-neasurenment, (a-value, 3.0),
(a-unit, “‘unit’’)) mapsto sentence 5 to last (b)

(@)

John Doe is a 41 year-old male patient of Dr. Smith undergoing mitral valver.rdgis
weight is 92 kilograms and his height 175 centimeters. Drips in protocolectrations in;
clude Dobutamine, Nitroglycerine and Levophed. He received 1000 nigrafomycin and
160 mg of Gentamicin for antibiotics. Around induction, he was anesthetized1®0t0
mg of Rocuronium, 11.0 mg of Etomidate, 500.0 mcg of Fentanyl and 1.0 mg of bldaz
lam. Before start of bypass , he had hypotension, at start of bygd&akysis, before coming
off bypass, bradycardia and after coming off bypass, hypotensiomedative-anemia. He
received three units of cell savers. His total cross clamp time was 2.0 t®aoridute. His
total bypass time was 2.0 hour 33.0 minutes. His pre-op cardiac output waasChatdiag
output immediately off was 4.73 .

(b)

Figure 6.1: Example of the MAGIC system. (a) Semantic inputeept. (b) MAGIC
output.
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He is 58-year-old male History is significant for Hodgkin's disease treated
age gender ~ pmh
with ...to his neck, back and chest. Hyperspadias BPH, hiatal hernia and
- N pmh pmh ~ pmh
proliferative lymph edema in hisrightarm No IV’s or blood pressure down in the left
pmh . - . .
arm. Medications —Inderal Lopid, Pepcid nitroglycerine and heparin EKG has PAC'’s
. med'pfeonned-preaped-p_reomjrip-prgop ] med-preop IEKQ-DfeO_D
His Echo showed Al, MR of 47 cine amps with hypokinetic basal anterior apical region.
echo-preop | . .
Hematocrit 1.2 otherwise his labs are unremarkable. Went to OR for what feglisto be
hct-preop
2 vessel CABG off pump both mammaries . ..
procedure

Figure 6.2: An annotated transcription of an ICU briefingdatinonymising). A full
briefing is shown in Figure 6.11 (b), on page 141.

age, gender, pmh, pmh, pmh, pmh,
med-preop, med-preop, med-preop,
drip-preop, med-preop, ekg-preop,
echo-preop, hct-preop, procedure, ...

Figure 6.3: The semantic sequence obtained from the trighsbiown in Figure 6.2.

over 200 tags. The domain expert also mapped these 200 t@§sdategories, which
are the ones | used for my experiments.

From these transcripts, | derived the sequences of sentagsduilding semantic
sequences as the ones mentioned in the previous chaptardfg). These sequences
constitute the input and working material for my order caaists analysis, they have an
average length of 33 tags per transcript (mi3, max= 66, 0 = 11.6). A tag-set dis-
tribution analysis (Table 6.1) showed that some of the categ dominate the tag counts
(this is similar to the effect seen by Varges (2003) when seitely tagging leading
sentences in WSJ acquisition articles). Furthermore, sag® accur fairly regularly
towards either the beginning (e.glate-of-birth) or the end (e.g.urine-output) of the
transcript, while others (e.gntraop-problems) are spread more or less evenly through-
out.

Obtaining these transcripts was a highly expensive tagkuimg the cooperation
and time of nurses and physicians in the busy ICU. My corputacama total number of
24 transcripts. Therefore, it was important to develop neplres that can detect patterns
without requiring large amounts of data.
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Table 6.1: The complete reduced tag-set used in my expetsmen

tag name count placement
allergies 20| 40 50 10
blood-gases 2 100
cardiac-output 30| 3 7 30 60
cell-saver 21 5 43 52
cross-clamp-time 10 40 40 20
date-of-birth 13| 100

drip 42 10 60 31
exogenous-red-blood-cel] 12 42 58
fluid 33 3 52 45
height 5 100

h/h 21| 5 9 33 =52
intubation 34| 21 62 12 6
intraop-problems 92| 4 25 45 26
labs 17| 6 29 65
minute-bypass-time 11 55 27 18
name 6 | 100

operation 27| 37 44 19
other-lines 10| 20 eo

platelet 2 100
preop-diagnosis 18| o4 6
past-medical-history 154 75 16 7 2
preop-med 96| 36 59 1 3
sex 9 | 100

swan 5| 20 80
temperature-intraop 2 50 50
total-meds-anesthetics 79 23 59 18
urine-output 17 24 76
weight 5| 8o 20

Trelative distribution of the tags in the sequence, in peileen e.g.[6, 0,29, 65 means that 6%
of the occurrences of this tag fell in the first fourth of thejsence, none appeared in the second
fourth, 29% in the third fourth and 65% at the end. For the sd#keadability, zero values are not
printed.
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6.2 Learning Order Constraints

As explained in Chapter 5, learning order constraints is a oasnsupervised learning:
sets of patterns, clusters of patterns and order constrauar clusters are mined from
the sequences of semantic tags without any need of annatatad To test the quality
of the acquired patterns, clusters and constraints, | keigle @ set of held-out semantic
sequences and compute how often the patterns identifieolgdwaining can be identified
in the held-out; how often clusters of patterns can be ifiedtiand, more interestingly,
how often the order constraints do hold over the held-outiseges, using the metrics
introduced in Section 5.3.2. | will present quantitativeuks using them via cross val-
idation. A comparison against the plan of the MAGIC systemgfgalitative evaluation
closes this section.

Quantitative Evaluation

| used 3-fold cross-validation to compute these metricsameax over 10 executions of
the experiment. The different parameter settings were e@fas follows: for the pattern
detection algorithm, | sefL,W) to (2,8) (awindow sizeof 8) and thesupport threshold

to 0.2. The clustering algorithm usedelative distance thresholdf 0.1. The results

at theprobability cut-pointof 0.99 are reported below. This figure was chosen to avoid
generating a very large number of constraints.

The system obtained an average of 58.538.460) patterns, clustered into
19.705 @3.023) clusters. When tested on the held out fold, all pattendscéusters are
found. For the default cut-point of 0.99, an average of 488.@-51.226) constraints
are found® from which 205.205 £45.954, a 51.904%) are always correct, 196.605
(+£68.134, a 48.072%) sometimes contain errors and 0.188350, a 0.037%) contains
a large number of errors. Table 6.2 shows other resultsfatdift probability cut-points.

Figure 6.4 shows the impact of the support threshold. As eeire the patterns to
appear in more instances in the training set, less pattegrisand, which in turn produce
clusters and constraints with higher accuracy. A suppoestiold of 0.2 seemed a good
compromise between the number of patterns and their quality

Figure 6.5 illustrates the effect of the window size on tH&edent metrics. As the
window size grows, better quality is achieved. The curvabibkze at a window size of
8, the number employed in my experiments.

Figure 6.6 shows the impact of the distance threshold f@teling. While fewer

5The number between parenthesis represent the standaadidewialculated over the different execu-
tions of the experiment.
5The constraints are defined not only over clusters, but alepindividual elements.
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Table 6.2: Evaluation metrics at different probability -patints. All metrics refer to
number of constraints over held-out sequences. Here, pant-of 0.99 is chosen as it
provides fewer mixed constraints and a reasonable totabruof constraints.

| cut-point | found | valid | mixed | invalid |
1 3071 + 756 855 + 668 | 2221 + 862 | 000 £ 000
0.99 40198 + 51.27| 20525 + 4599| 19665 + 6817 | 018 £ 0.39
0.98 461.88 =+ 5997 | 24035 T+ 5083| 22128 + 7744 | 035 =+ 075
0.97 46525 =+ 6034 || 24035 T+ 50.83| 22465 + 7766 | 035 =+ 075
0.9 60601 + 74.96| 32991 + 6386| 27481 =+ 9331 | 138 £ 165
0.8 71248 + 8247| 39758 £+ 732 | 311.98 + 101.48| 301 + 244
0.7 831.75 =+ 93.33| 49051 + 8554| 33648 + 108.81| 485 =+ 300

clusters may arguably produce better results, | settlec femall distance threshold to
obtain a greater number of clusters and therefore be ablppdmreaate the effects of
clustering better.

The learning curve (Figure 6.7) shows some of the problemdfing with such
a small data set: the curves present some peaks and vallgysibishows no sign of
stabilizing.

Qualitative Evaluation

The system was executed using all the available informdtioa 24 transcripts), with
similar parametric settings to the ones used in the quéimétavaluation, yielding a set
of 29 constraints, out of 23 generated clusters.

These constraints were analyzed by hand and compared taittm@ strategic
component. We found that most rules that were learned wdigated by the existing
plan. Moreover, we gained placement constraints for twoga®f semantic information
(e.g., medical history) that are currently not represemtele system’s plan. In addition,
we found minor order variation in relative placement of twifedent pairs of semantic
tags. This leads us to believe that the fixed order on theseylar tags can be relaxed
to attain greater degrees of variability in the generatadgl The process of creation of
the existing content-planner was thorough, informed bytiplel domain experts over a
three year period. The fact that the obtained constrain&lynoccur in the existing plan
was very encouraging.
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Impact of the support threshold
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Figure 6.4: Impact of the support threshold.
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Impact of the window size
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Figure 6.5: Impact of window size. The curves stabilize acbwindow size 8, the one
used for the experiments reported here.
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Impact of the distance threshold
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Figure 6.6: Impact of distance threshold. A higher thredlpybduces a fewer number
of constraints.
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Learning curve
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Figure 6.7: Learning curve.
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6.3 Learning Document Structuring Schemata

The framework described in Chapter 5 (Section 5.5) was impieged as follows: | em-
ployed a population of 2000 chromosomes, discarding 25%eforse-fitted ones in
each cycle. The vacant places were filled with 40% chromosageeerated by muta-
tion and 60% by cross-over. The mutation operator was applith a 40% probability
of performing a node insertion or deletion and 60% chancéobsing a shuffle muta-
tion. The population was started from a chromosome with onémode connected to a
random ordering of the 82 operators and then nodes wergedsamd shuffled 40 time’s.

As baseline, | used the initial population of the three rusis (andomly built
planners in total). The MAGIC planner was used as my golddsted) as it has been
previously evaluated by domain experts as highly accunadewas not involved in my
learning process at any part.

The planner used in the MAGIC system was developed with effey in mind,
but it lacks flexibility and the plan used is more approprfataextual output (as opposed
to the speech output it was targeted). It has a total of 274atqes, 192 of them being
structure-definingdiscourseor topic levels) and 82, data definingtbmiclevel) opera-
tors® Figure planner, the input is checked for the existence ofiiiem specified by the
operator. If there is data available, the correspondingasgimstructures are inserted in
the output The internal nodes, on the other hand, form a tree represgthig discourse
plan; they provide a structural frame for the placement efdtomic operators. Thus,
the execution of the planner involves a traversal of thewrede querying the input and
instantiating the necessary nodes (an example of suchwepresented in Chapter 2,
Figure 2.5).

The MAGIC strategic component uses a tree as internal reptason because
its document plansontain text planning information (i.e., top level nodes\pde para-
graph divisions) and aggregation information (the eleméeiow pre-terminals can all
be aggregated together). If it not were for this extra infation, a plain sequence of
atomic operators would be equally expressive. On the otluad H expect the genetic al-
gorithm handling of the trees to produce robust structurak/ pre-terminals that behave
reasonably well under node shuffling mutations will remaithie genetic pool, meaning

/] picked this figure to obtain trees witheight~ 4. The other figures where picked following the
author’s intuitions about the domain.

8Equivalent to the notion ofmessagegReiter and Dale, 2000), pages 61-63. This atomic level op-
erators are similar to my communicative predicates, aliteeiy do not contain any constraints beyond
checking whether there is data avaible for instantiation.

9A node can span several nodes in the instantiated plan ipésified data is multi-valued, this is
similar to say that the schemata is sequence of nodes witeenklstar operator over each of them.
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that trees with felicitous arranging of the internal nodel wcrease their presence in
the population.

The MAGIC generator has a special emphasis on its aggregatmponent,
CAsPER (Shaw, 2001). One of the original motivations of my proposechitecture
was to learn automatically the interaction between thergaand the aggregation com-
ponent. While my preliminary experiments (Duboue and McKeo2002) showed the
feasibility of such approach, it had two drawbacks: firstegquires the MAGIC genera-
tor to be effectively run for evergocument planif aggregation is disable, the caching
mechanism described below can be employed to dramatigadlgdsup the approach.
The second drawback is more problematic to the experimeatepted here; &SPER
imposes a number of preconditions on the strategic compotiethese preconditions
are not satisfied, its behavior is undefined. Because tharexiglanner satisfies these
preconditions, including the aggregation component ingofitness function adds an ex-
tra piece of information to the function, biasing the funattowards the MAGIC planner.
This situation is problematic, as | am interested in analyzhe feasibility of reproduc-
ing the existing planner using only the Text and Knowledggus.

When the aggregation component is switched off, every atomécator will ul-
timately produce a sentence on its own. The quality of theegad text will be then
quite low and very repetitive (repeating phrases sucthagatient isn almost half of
the sentences and so on). This repetitive nature shouldenatrbajor problem as the
text-to-text metric employs the word information conteaimputed over a large corpus
of comparable texts to score the relative importance of sord

Metrics

| evaluate using the Kendallsdescribed in the previous chapter:

2(number of inversiop

=T NN D 2

WhereN is the number of objects (atomic operators) and inversietisa number of ex-
changes on consecutive objects required to put them in tex cgturned by the MAGIC
planner.

Experiments

| did a number of experiments to gain further insights on #esh process and validate
the approach. For the first experiment, | looked to build aattarization of the search
process. To that end, | let the search go for 50 iterationsperun. The fitness of the
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Fitness function during training (50 iterations)
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Figure 6.8: Fitness over 50 iterations.

best instance is plotted in Figure 6.8. The search achievegain level of stabilization
around iteration 25. | thus plot three different runs (tbgewith an interpolated average)
until iteration 21 (Figure 6.9) to validate the learning qees.

Another way to appreciate the learning process is to takeladb the goodness
of the population as a whole, at different generations (fl&gu10). There we can see
that the order constraints are important at early stagdsecfearch.

The second experiment is the actual evaluation of the ptaragainst the MAGIC
planner, using Kendall’s. In this experiment, three independent runs are iterated 21
steps. The best instance for each run at each iterationsteg@cuted over 50, unseen,
semantic inputs and the outpdbcument plarfconverted into a sequence of atomic op-
erators) is scored against the sequence obtained from tl@l® Alanner. The average
over the three runs gaweof 0.2288+ 0.0342.

To provide a baseline, | joined together the first generatibtihe three runs (a
total of 6,000 random instances). When scored using KesdaHlgainst the MAGIC
planner, they had an averagef 0.0952 @ 0.1144).

These experiments show the feasibility of the approachoagh the training
material was unsuitable to fully re-create the existing MBGlanner. It would have
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Fitness function during training (22 iterations)

-1376 T T T T
average
e LU
Ko run 2 ---x<---
1378 e run 3 * _

-1380
-1382

-1384

1386 [ -

1388 -

-1390 ' ' ' '
0

iteration

Figure 6.9: Fitness over 21 iterations in three differemistuThe y-axis is the fitness
value of each run.
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Overall Population Goodness
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Figure 6.10: Percentage of the new instances that violdtedder constraints (marked
as ‘bad’), violated some order constraints (marked as &ues) or validated all of them

and were verbalized (marked as ‘good’). The y-axis is thegaage (from 0 to 100%

—marked 1 in the graph) of the population covered by eaclscldsre we can see that
in early stages of the search, bad and average instancesatenie genetic pool. As
the search progresses, only good instances remain.



140

been interesting to see the impact of the technique as a guatltyping tool during
early stages of the development of the project, althoughish® longer possible.

6.4 Conclusions

This chapter exemplifies the application of the techniqieedeed in the previous chap-
ter to data in the medical domain. This domain has a straighi#frd rhetorical structure
that allows my techniques to positively learn Strategic &ation logic.

From a broader perspective, the results are quite lowr & 0.22 shows an
improvement over a completely random baseline but it issstileak correlation with the
MAGIC planner. I think the problem in this case is to evaluateautomatically obtained
schema against the MAGIC planner. It may be the case thatahmeng material differs
to a large extent with the MAGIC plann&.Moreover, the reduced training size forbids
using cross-validation techniques to analyze how well¢herded planners perform when
tested against unseen training material.

The approach presented here is definitely CPU-intensiverwithing times usu-
ally expressed in days. Nevertheless, as Figure 6.9 shhigssta search process that
makes positive progress towards its goal. Moreover, thgrpss is not only in the best
instance of the population, but it is a progress across thedhas shown in Figure 6.10,
where it is clear that as times progresses, the populatiotac a larger percentage of
really worthy instances. This progress is to be contrasidutive lack of progress when
these technique are applied ta ®GENIE data, as presented in the next chapter.

Figure 6.10 also shows the impact of the order constraist®aalier stages of
the population use them to distinguish totally wrong ins&m(the lower part of the bar)
with the most promising instances (the upper part of the l@2i)er extrinsic evaluations
of the value of the order constraints were not attempted.

Contrasting MAGIC and ROGENIE results, it begs the question of which at-
tributes in the MAGIC data makes it amenable for the learnig mentioned in Chap-
ter 2 (Section 2.2.1), MAGIC schemata are only suitable fanping single-topic dis-
course, as all discourse in MAGIC has the same focus —thergatie surgery was
about. In the ROGENIE data, for the contrary, the focus shifts from the actonbei
described to her selected movies, and then to major awactisneavie itself received.

10sadly, ther of the training material against the MAGIC planner was ndedweined.
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Approximately 175-cm gentleman. History of rheumatic fever and polio. Hemsmbu-
latory but can move his legs. History of acute renal insufficiency with a tagriaof 1.4.
History of mixed mr/ms lesion, tricuspid regurg and ai. Decreased right &rglded func+
tion, 4 chamber dilatation. Tricuspid repair with the ringand mvr with a st. juddisey
History of pulmonary hypertension with a baseline of 90/40 catheter. Heowdmeparir
nph preop. No allergies. Feedand ......... lines were extubatedfiembypass appro
imately 2.5 hours. His ischemic time was 2 hours and 2 minutes. No problems. Heffa
on dobutamine because of poor function. No problems post-bypass tdifie@d on levo
nitro and dobutamine at 4.5 mcg per kilo. Got vancomycin and gentamicin aticck,
standard iv anesthetics. He received a liter of albumin, 3 units of cell,savexogenou

blood. Last po2 was 453, potassium of 4.6, hematocrit of 26, befdti@ag@ny blood gas.

His cardiac output with his chest closed

(@)

The patient is male. He had an easy intubation. Before coming off bypabadbradycal
dia. Drips in protocol concentrations include Dobutamine, Nitroglycerindawophed. A
start of bypass, he had alkalosis. After coming off bypass, he hailesbnemia. Aroung
induction, he was anesthetized with 130.0 mg of Rocuronium, 11.0 mg of Etormb@ate®
mcg of Fentanyl and 1.0 mg of Midazolam. His weight is 92 kilograms and hi®p
cardiac output 4.13.

re-

(b)
Figure 6.11: Examples. (a) Physician briefing. (b) Learnedmer output.
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Chapter 7

Experiments in the Biographical
Domain

This chapter describes the second round of Document Stmigiexperiments performed
in this dissertation. As part of the joint Columbia UniveysitUniversity of Colorado
Open Question Answering project (AQUAINT), | developeHd®ENIE, a biography
generator. The goal of ®bGENIE was to provide final users with means to quickly and
concisely communicate information about persons of istedlecombined a natural lan-
guage generator with an information extraction infragtrtes leading to ultimately mix
textual (such as existing biographies and news articlegjedisas non-textual (such as
airline passengers lists and bank records) sources. | heegklimples from the domain
contained in the corpus described in this chapter to autoaiigt construct Document
Structuring schemata. These schemata guide the geneddtimagraphies on unseen
people.

| gathered an aligned Text-Knowledge corpus in the biogyagdmain, as ex-
plained in the next section. More specifically, my corpus isoflection of human-
produced texts together with the knowledge base a genemtgiem might use as input
for generation. The knowledge base contains many piecegarhation related to the
person the biography talks about (and that the system welltaggenerate that type of
biography), not all of which necessarily will appear in thedsaphy. That is, the associ-
ated knowledge base is not the semantics ofaiget textbut the larger sétof all things
that could possibly be said about the person in question. ofthering of the intersec-
tion between the input knowledge base and the semantice dhtbet text is what | am
interested in capturing by means of my statistical techesqu

1The semantics of the text normally contain information mesgnt in my semantic input, although for
the sake of Content Selection is better to consider it as alferiiset.
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7.1 Data

The Text-Knowledge corpus used in this chapter consistaofidedge’s extracted from
a semi-structured knowledge, biographical fact-sheesssdrted celebrities. These fact-
sheets were crawled from E! on-lthin November 2002. In addition to this knowledge
source, | also employ an extended knowledge source, alsacgad from E! on-line but
with a slightly different ontology and with information alnithe movies actors appeared
in added. This extended knowledge knowledge source waspacaied to these ex-
periments at the end of this dissertation and was not usedgisystem development.
Different biographical sites provide the text part, to tést ability of the system to learn
from different types of data. As explained in Section 3.24¢h corpus was split into a
training and test set, with the test set tagged for seleetrmwhordering (ordering only in
the last corpus) by the author.

The annotation was done by the author, by reading the bibgraand checking
which triples (in the RDF sensérame, slot, valug were actually mentioned in the text
(going back and forth to the biography as needed). Two caspsred special atten-
tion. The first one waaggregated informatigre.g., the text may sd¥ye received three
Grammys”while in the semantic input each award was itemized, togetith the year it
was received, the reason and the type (Best Song of the Year,latthat case, only the
name of award was selected, for each of the three awards. The deease was factual
errors. For example, the biography may say the person wasibdvlA and raised in
WA, but the fact-sheet may say he was born in WA. In those céisesriginal aim of
the human writer was given priority and the place of birth wasked as selected, even
though one of the two sources were wrong.

Biographical Descriptions Domain. Biography generation is an exciting field that has
attracted practitioners of NLG in the past (see the Relaterk\loapter, Section 2.4.3).
It has the advantages of being a constrained domain ametoatlerent generation ap-
proaches, while at the same time offering more possitsliian many constrained do-
mains, given the variety of styles that biographies exhdstwell as the possibility for
ultimately generating relatively long biographies.

The AQUAINT project focuses mostly on military and intetigce targets. How-
ever, there is a lack of publicly available information abeuch targets. Therefore, |
shifted my attention to more popular individuals. As my ajgmh is based on Machine
Learning, given enough training data, the particular apgical field chosen is immate-
rial.

2http://eonline.com
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By far the most popular domain for biographies and assortedatsout people is
thecelebritiesdomain. Most fans are eager to express their support tofthvairite actor,
model, singer or director by collecting sizable amountsigfa or assembling them in
very detailed biographies. The availability of informattim this domain has lured other
researchers into working with it (Pang, Lee, and Vaithyhaat 2002; Taskar, Segal, and
Koller, 2001).

| obtained the semantic input from pages describing itedhiaetual information
about personsfact-sheetpages (Figure 7.1). Such pages are abundantdimbrities
(singers, movie stars and other famous people).

However, the level of detail of the fact-sheets was too @éos my needs; |
employed a combination of Information Extraction (IE) ptsito break the fact-sheet
pages into smaller parts. A full-fledged natural languageeggtion system expects a
level of detail in its input that goes beyond the lay persotolmgical modeling found
in the mined fact-sheets. To improve over that scenariorfopmed a process | termed
Closed Information Extractianin this process, | build scripts without generalization in
mind. It can be thought of as over-fitting a regular IE process

My current corpus contains semantic information for aboli®Q people, together
with aligned biographies in four different sub-corporakkd against 108, 578, 205 and
341 biographies for each of these sub-corpora. The sulBipere mined from four
different Web sites and contain different writing styleslaext structure. Such an envi-
ronment is ideal for learning and testing content plannéeigted issues.

Acquisition Process

The acquisition process consisted roughly of three stemsvling, cleaning and link-
ing. The crawling step involved downloading the actual gagehe cleaning step was
the most time-consuming step and involved @lesed Information Extractioprocess
mentioned above. Finally, | had data about people and bpbgea about (hopefully the
same) people. The last step took care of linking data witgraiphy, when appropriate.

While E! Online contains also biographies, chances are the fact-sheedissed
on the biographies or vice-versa. To improve the qualityhefdligned corpora, | mined
different sites for the biographies. While several Web sfésx biographical information
repositories, most of them focus in particular type of imdiials. The sites | crawled that
made up my corpus areww. bi ogr aphy. com www. s9. com www. i ndb. com
andwww. wi ki pedi a. or g.

Regarding the cleaning step, it was the most time-consunieg ss already
mentioned. This was no surprise, as data cleansing is nigre@isidered among the
most time consuming steps in data mining (Rahm and Do, 2000).



Travel | Shop | Discussions | Classroom | Magazine | On TV_ | Games
Search  Over 25,000 personalities!
Search Results:
Go!
WORKS  RELATED INFO

Connery, Sir Sean 1930 -
Actor, born Thomas Connery on August 25, 1930,
Fountainbridge, Edinburgh, Scotland, the son of a
truck driver and charwoman. He has a brother, Neil|
born in 1938. Connery dropped out of school at agd
fifteen to join the British Navy.

Connery is best known for his portrayal of the suav
sophisticated British spy, James Bond, in the 19604

After Connery was discharged from British Navy d
to ulcers, he worked at a series of odd jobs, includi

bricklayer, lifeguard, coffin polisher and artist's model. His avocation was

bodybuilding, which helped him secure some swimsuit modeling jobs. In 1950

appeared in the Mr. Universe contest, representing Scotland, and placed third

His theater debut was in London in 1951, when he landed a part in the chorus]
South PacificHe continued his acting career in repertory theater. In 1954 he
started acting in British TV, where he scored a success in the B&Qisiem for

a HeavyweightThe actor moved on to films, playing smaller roles and working|
to supporting parts. Connery's first important movie role wasriather Time,
Anomer Placq(1958), wuh Lana Turner. He was also in the Titanic éphtight
Connery starred in the fanciful
Dlsney production obavby OGill and the Little Peopl¢1959). He also appeared
in Tarzan's Greatest Adventu(&959) andrhe Longest Daf1962).

But Connery was still relatively unknown until he was cast as the dangerously
suave and virile secret agent, James Bond, in a series of films based on the lan
Fleming adventure novels. He beat out Cary Grant, Rex Harrison, Trevor Howard,
Patrick McGoohan, and Roger Moore for the part. The first Bond filmDwalio
(1962), followed byFrom Russia, With Lovd 963),Goldfinger(1964),
Thunderball(1965),You Only Live Twicé1967), andiamonds are Forever

style.
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Sean Connery
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He's...one of the best actors there i, simple as that... With
ihere s a persona ihat ever

s Bond everalof e popular spy

o moves, staring wih 1982 O
Simitcan: Onert)
fe: Diane Cilento, acress: married in 1962 divorced in 1973
Wie: Micheline Rodushrune, panter. French: bom in Nice,
France; raised n North Affica: marred in 1975

Famiy

S osep conry oot o iy

Notner

it R omratr et om acingand became
e,

Son' Jason Joséph Connery, acor bom January 11, 1963

mother, Diane Clenio

Grandson: Dashill Guian Connery;bor June 1997

Aviards:
1971: Golden Globe: World Film Favorite (Male)
io87. Natonal Board of Review: Bes Supporing Actr, The

/387" Golden Globe: Best Supporting Actr, The Uniouchaties
1987: Oscar: Best Supporting Actor, The Urtouchabie:

1TV Movie Award: Best Onsereen Duo, The Rock; award
shared i Nicles Cage
1996: Venice Film Festval Golden Lion Award: Lifetime

4506 BAFTA Folowship
1998: Tony: Best Play, Art; shared award; Connery was one of
the producers

(a) Biography

(b) Fact-sheet

Figure 7.1: Biography and fact-sheet page, from the Web.

Table 7.1: Main categories in my semantic input.

Agency
Awards

Birth date
Birth Name
Birthplace
Claim to Fame
Date of Death

Education
Factoids
Family
Occupations
Person

Quote
Significant Other(s

145
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award 1996: London Film Critics’ Circle: Best British Ac-
tor, Trainspotting tied with lan McKellen Richard

i) (E. McGregor)

education Yale University, New Haven, Connecticut; M.A., English
Literature, 1987 Worked toward Ph.D.; did not complete the-
SIS(D. Duchovny)

family Mother: Helen Barr, bookkeeper, cashier at Dee’s Hamburger

Drive-In; appeared with Roseanne on the Lifetime interviel t
ute speciall.ike Mother, Like DaUthe(Roseanne)

significant other(s) Husband: Alan Hamel, producer, manager;
met while both worked onThe Anniversary Gamemarried

1977(5. Somers)

Figure 7.2: Examples of the data that make up my frames.

| cleaned thdact-sheetsby means of &losed Information Extractioprocess.
The fact-sheets originally contained information in 14egaties, shown in Table 7.1.
While some categories contained information that could mecty included in my
knowledge representation (I use a representation sinol&DRF (Lassila and Swick,
1999)), others contained heavily aggregated informasomg difficult cases are shown
in Figure 7.2).

To cope with these cases, | wrote a series of scripts, witteipest to capture
different types of information. As usual, the patterns hadre, most frequently over-
generating.

Having a sizable set of semantic inputs and several setogfdphies as sepa-
rated resources involved a real problem when it was the tnpait them together. While
| did not hesitate in spending hours of human labor for thestraction of this corpus,
aligning 1,100 fact-sheets against 20,000 biographiesiig tinfeasible to be done by
hand. | thus needed to link the two resources, a step congidey the fact that names
tend to be paraphrased, and are not unique identifiers {leage is a silent-movies era
actor also name#iarrison Ford). | used techniques fromecord linkagein census sta-
tistical analysis (Fellegi and Sunter, 1969), a well stddiescipline with more than 40
years of practice.



Table 7.2: Relations in my biographical knowledge base.
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agency father province

aka first quote

award full reason

birth givenname relative
canned-text last significant-other
city major source
claimtofame month start

country mother subtitle

date name teaching-agent
day occupation text

death older title

degree place xtra

education postmod year

end premod younger
factoids

This section summarizes major highlights of the constdictepus. | briefly de-
scribe the knowledge representation, and report totaldgyaf frames, relations, words,
tokens and links.

| employed a type-based frame structure, with inheritafidee information for
each person is kept in a separate file, as a set of frames. Eawoh has a unique name,
a type (linked to an ontology) and a list of attribute-val@rg. Following RDF nomen-
clature, | count triples of the forrfframe nameattribute value). Attributes can be list-
valued, can refer to other frames, or may contain atomiceg(aurrently of typesym-
bol, string,or numbej.

The final corpus contains 50,000 frames, with 106K framebaite-value triples,
for the 1,100 people mentioned in each fact-sheet. The saane linked through 43
different relations shown in Table 7.2. An example set afnfea is shown in Figure 3.1.

The details of the linked resource were detailed in Chaptéu8] summarize
their details in Table 7.3.



Table 7.3: Characteristics of the four different corpora.

| bi ography. com| Total | Average | Train | Test |
# pairs 102 - 91 11
# frames 4,956 45.588| 4,442 514
# triples 10,628 104.196] 9,500| 1,128
# words 54,001| 529.422+ 301.15| 49,220| 4,781
# chars 337,775| 3,311.520+ 1,857.96| 307,978| 29,797
| s9.com | Total | Average | Train | Test |
# pairs 578 - 558 20
# frames 30,709 53.130| 29,723 986
# triples 95,032 164.415, 92,969| 2,063
# words 21,037 36.396+ 34.04| 20,192 845
# chars 138,711 239.984+ 215.82| 133,204 5,507
| i mdb. com | Total | Average | Train | Test |
# pairs 199 - 185 14
# frames 10,123 50.869| 9,362 761
# triples 31,676 159.176| 29,323| 2,353
# words 64,196| 322.593+ 285.63| 60,086| 4,110
# chars 378,778| 1,903.407+ 1,693.88| 354,560| 24,218
| wi ki pedia.org | Total | Average | Train | Test |
# pairs 361 - 341 20
# frames 58,387 161.737|, 55,326| 3,061
# triples 108,009 299.194| 102,297 5,712
# words 68,953 191.006+ 55.17| 64,784 4,169
# chars 418,035| 1,157.992+ 334.01| 392,925 25,110

148
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Table 7.4: Evaluation metrics at different probability -@atints. All metrics refer to
number of constraints over held-out sequences.

| cut-point | found | valid | mixed | invalid |
1 61.35 T 3.82 2485 + 344 | 3654 + 458 | 000 + 0.0
0.99 537.08 =+ 1847 | 27668 =+ 1554 | 26045 =+ 1242|000 £ 0.00
0.98 598.94 =+ 2013 | 30601 £ 1595| 29295 + 13.78| 0.08 =+ 0.23
0.97 60541 =+ 2024 306,01 = 1595| 29941 =+ 1444|008 £ 023
0.9 766.65 1 27.49| 40341 £+ 214 | 36321 + 1511|011 + 041
0.8 93081 =+ 30.79| 497.81 £ 2458 43288 + 1398|021 =+ 051
0.7 113401 £ 3761 | 66858 £ 3049| 46514 + 1772|038 + 065

7.2 Learning Order Constraints

Mimicking the experiments in the previous chapter, theaysbobtained an average of
14.171 ¢1.806) patterns, clustered into 3.838( 384) clusters. When tested on the
held out fold, all patterns and clusters are found. For tHaudecut-point of 0.99, an
average of 537.038{18.426) constraints are fourfdfrom which 276.638415.502, a
51.502%) are always correct, 260.4@51@.377, a 48.507%) sometimes contain errors
and no constraints contains a large number of errors. TaBlshbws other results at
different probability cut-points. These figures are cornipatwith the ones presented in
the previous chapter.

Figure 7.3 shows the impact of the support threshold. Agasnwe require the
patterns to appear in more instances in the training satpla$erns are found, which in
turn produces clusters and constraints with higher acgukéere too, a support threshold
of 0.2 seemed a good compromise between the number of a#tedtheir quality.

Figure 7.4 illustrates the effect of the window size on thiéedént metrics. As
the window size grows, better quality is achieved, but thedew stabilizes very early
in the process.

The learning curve (Figure 7.5) shows that the training netes now enough to
produce a smooth curve.

7.3 Learning Document Structuring Schemata

| will discuss here my preliminary results in learning Docmh Structuring schemata.
| fully implemented the approach described in Chapter 5 amtbpeed a number of

3The constraints are defined not only over clusters, but alepindividual elements.
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Impact of the support threshold

700 T T T T T T
m # of patterns —+—
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Figure 7.3: Impact of the support threshold. The suppo#gstold is the percentage of
the total number of sequences that a pattern has to appeaberused for learning order
constraints. From the figure, a support threshold of 20%essprted a good compromise.
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Impact of the window size

600 T T T T T T
# of patterns —+—
# of clusters ---x---
B3 = = & ) ) a 8 8 # patterns found ------
# pairs found 8-
500 - # clusters found ——m— -
/ # correct constraints ---©---
# mixed constraints ----e---
i
400 - T
300 y
o R R o - - R s S R o)
B e B R LA e B
o
200 b
100 T
4 6 8 10 12 14 16 18 20
Window Size

Figure 7.4: Impact of the window size. The window size showswgpact only for small
numbers.
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Learning curve
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Figure 7.5: Learning curve. As more training is availablee humber of constraints
found stabilizes.
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Fitness function during training (392 iterations)
0.41 T T T T T T

T
fitness

0.4 .

0.39 —

0.38 - .

0.37 - -

0.36 - .

0.35 -

0.34 - T

0.33 1 1 1 1 1 1 1
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iteration

Figure 7.6: Fitness value over 392 iterations. The peakariitjure shows the successful
application of an operator to the best schema.

rounds of training with the order sequences obtained freen\Viiriant 4matched texts
in thew ki pedi a. or g corpus. Figure 7.6 shows one such a run, representative of
the experiments | conducted. The figure shows the evolutiola¢k of it) of the fithess
function. Even though my approach is faster than doing fatbalization, the curve
took a good one week to be computed on a dual 3Ghz Pentium 4imeachhe curve
shows a certain improvement over time, however (the peaknarderation 300). This
very slow rate of convergence can easily be attributed tofagtors: the size of the
search space and the lack of training-motivated operatdriile the fitness function
is defined by the training material, the operators just ird@ndom alterations on the
instances (schemata). Given the size of the search spacenthires a particularly slow
convergence for the search.

A schema at the end of the process is shown in Figure 7.7. Tgusefimay be
a piece of evidence for another problem with the approaahfdbus mechanism is an
integral part of the semantics of the schemata. Without p dederstanding of both the
meaning of the communicative predicates (the edges in @qgghyiand the prioritization
made by the focus mechanism, it is very difficult, if not impibe to predict the path
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over the graph that will result in thdocument plansl suspect the focus mechanism as
defined originally by McKeown (1985) is hurting my learnirggcause it can result in
abrupt changes on the schemata. It seems learning both tbg@iher will benefit the
composite process.

7.4 Conclusions

The domain of biographical descriptions contains some @fcttmplexities that makes
the Strategic Generation problem difficult in a generalsg{recursion, branching, etc.).
These complexities imply further research is needed tgy fatiquire a schema from a
Text-Knowledge corpus. This subject is further explorethmnext chapter.

Continuing with the discussion in the conclusions of the jines chapter, here a
complex domain implies a domain that requires to drill dowrlifferent entities. The
example biography schema, shown in Figure 5.3, containy mach drill downs: for
example, after an entity(ii | t ) of which the personSel f ) has been involved into the
construction has been introduced, the appraisals mativatéhat entity are enumerated.

The difference then between the MAGIC data and tRe®ENIE data is in the
latter’s need to capture focus shifts during learning. Toeeehwas that, as the technique
described in Chapter 5 was focus agnostic, the GA was going tabke to learn the
schema in spite of this focus problem.

Sadly, post hocanalysis shows that focus affects the GA too negatively;nwhe
a very promising solution is slightly modified, most of theé it will produce a com-
pletely invalid offspring. That means that, for the most parimprovements are done in
each step of the genetic search. This can be seen by compagung 6.9 in the previous
chapter with Figure 7.6. Both figures took comparable amotititne to be computed.
We can see that in roughly the same amount of time, the appwdbout using ver-
balizations takes an order of magnitude less time to compdbavever, in 21 steps the
system running in MAGIC data already stabilizes. In 392 stéipe system running in
PROGENIE data has managed to make only one successful step. Moyéaséntuitive
that the ProGenlE data will need more than only 21 steps todfisolution. Therefore,
if it takes about a week to do each of these steps, it is cleathie current solution runs
into computational feasibility problems with this data.

With respect to the order constraints, the lack of resultheoverall schema
learning forbids an extrinsic evaluation as done in the iptesschapter. A feasible alter-
native would have been to evaluate their use as stand-alanagss, but this approach
was not attempted.

Some ways to go around the problems identified in these enpats will be
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discussed in the next chapter and in the conclusions cha$tacinctly, one alterna-
tive would be to improve the system with more informed opamathat will modify the
population according to the training material (data-drie@erators). Another promising
alternative is learning the focus mechanism together \wigHinite state automaton. Both
approaches are target for future work.



157

Chapter 8

Limitations

My proposed technique to acquire Content Selection rulesDuwiment Structuring
schemata from a Text and Knowledge corpus has a number obdcks and limita-
tions. | have identified some of them that | will summarizehistchapter. | will first
discuss general limitations of my techniques (Section, &t)uding the need for a Text-
Knowledge corpus and domain requirements. The limitat@frithe matched text con-
struction process are discussed in Section 8.2. Finalhyigdrning of Content Selection
rules and Document Structuring schemata have particufaralions discussed in Sec-
tion 8.3 and Section 8.4, respectively.

8.1 General Limitations

| will now mention briefly some general limitations of my appch.

Knowledge requirement. The Strategic Generation component in a NLG system op-
erates at a very high level of abstraction; it takes knowdealginput and produce®cu-
ment plansas output. It is natural that a system learning Strategice@ion logic will
also require knowledge as training material. This requaetobviously restricts the
application of the technique to domains where such stradtbnowledge can be gath-
ered. Luckily, existing efforts such as the W3C Semantic \Wadriters-Lee, Hendler,
and Lassila, 2001) or the standardization of XML formadterease the availability of
structured knowledge.

Ihtt p: // www. oasi s. or g.
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Text-Knowledge corpus requirement. This is a major requirement of my technique.
In a sense, my thesis is an exploration of the possibilitiesioh a formidable learning
resource. Working on relaxations to the Text-Knowledgeaum@gnent is an attractive
follow-up to my work, for example using text alone and extirag knowledge from it
by means of information extraction techniques. It would bcdlt, if not impossible,
to acquire Content Selection knowledge with such an appro@tfer researchers have
coped with the lack of a perfect Text-Knowledge resourcé wiainual efforts. Barzilay
and Lee (2002) had knowledge available and then had peofikewerbalizations for it.
On the contrary, Karamanis and Manurung (2002) had texitaél@and built associated
knowledge.

Domain Requirements. For a more precise description of the domain requirements
imposed by my technique, five issues need to be taken intaiatco

1. An RST analysis of the documents in the domain will contagrerthat a certain
percentage of AINT. Marcu (2000)’s or Corston-Oliver et al. (2002) rhetorical
parsers can be used to measure this figure.

2. There is a large percentagehafpaxwords (word types that appear only once in a
document) that can be traced back to the semantic input.

3. There is a bound on the length of the text itself, my systedressed success-
fully texts in the order of four to six paragraphs. Lengthytseare outside the
capabilities of current generation systems, at any rate.

4. As mentioned before, an aligned Text-Knowledge corpsddae available. Each
domain must supply training data for my system, in the forra césource consist-
ing of text and an associated knowledge base (a s#igifed pairg.

5. There is a lack of intentional structuyser segment of the textom the intentional
stand-point, the whole text is an atomieTENTION: REPORT. Measuring this fact
is quite complex but | would argue new techniques for opirdetection can be of
use here (Taskar, Segal, and Koller, 2001; Pang, Lee, atloygaiathan, 2002; Yu
and Hatzivassiloglou, 2003).

Computationally Expensive. The methods employed in this thesis normally involve
searches in large spaces and other computationally intetesks. This type of behavior
is to be expected when dealing with large combinatorial lgrols. More importantly,



159

most of the algorithms described here are parallelizealitetvwial or nearly trivial ef-
fort. Some of my experimental chapters also speak of theliéigsof my technique,
although some of the problems in the previous chapter carabed back to this limita-
tion.

Learning for NLG. My work relates to recent uses of Machine Learning techrsque
for NLG tasks. A word of caution is required, as the type ofitcqgroduced will mimic
the quality of the material offered to the system. Reiter anpla8a (2002) pointed out
that exposing a learning system to poorly written text valin a robust understanding
system. In the NLG case, however, they pointed out that ysoog texts will be akin to
using poor parse trees in the understanding setting: paioiing text means poor output
text quality in NLG, not robustness. Moreover, | believestal study of a domain allows
the NLG practitioner to make a system that generates begesthan the average human.
Humans do not succeed in producing texts that are consisiteatbiguous and concise
at all times. A well tuned NLG system can reach such levelseofgetion. By learning
a symbolic representation, my thesis fits perfectly in thisuype as a quick prototyping
tool.

Thresholds and Parameters. The parameter tables in the different chapters (summa-
rized in Table 1.1) point to another limitation of this tre@giechniques: the need for a
number of thresholds and parameters. This necessity &rigagwo sources. First, the
use of a unsupervised learning approach in areas of thisthesally calls for certain
parameters to be hand-picked. This is normal practice ieratinsupervised settings
(e.g., the number of cluster in a clustering applicatio®cdd, Genetic Algorithms are
usually criticized as having a number of parameters (eapulation size, mutation rate,
etc.) that varies widely from application to application@#fs. My particular deploy-
ment of GAs does not escape from this limitation.

The situation described above is a true limitation of therapph described here.
Nevertheless, as explained in Chapter 1, | envision a SteaBsneration-learner system
as a tool for the NLG practitioner that will assist the praatier when building a NLG
system for a new domain. As such, the parameters of this taplkfstem) will have to
be dealt intuitively by the NLG practitioner. The paramsteused in my experiments
(shown in Table 1.1) are provided as a means to help buile: timdsitions.
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8.2 Limitations of the matched textonstruction process

The matched textonstruction process is a large source of errors but alsojer rman-
tribution of this thesis. Unsupervised systems deriverairtbehavior from underlying
assumptions on the model. This fact makes them unstableiffiediitito deal with in
general. My system is no exception to these general issoaslkrof its shortcoming is
to talk about the shortcomings of the model itself. | willjpsint out two major issues |
have noticed while experimenting with the approach: thereelarge amounts of text
and the fact that the system can be easily mislead.

Because of its statistical nature, large quantities of textreeeded to identify
meaningful verbalizations. Moreover, even if normally tdefault’ verbalizations are
picked by the system, an even larger amount of text is negegsaelect relevant vari-
ants. In experiments (unreported in this thesis) | haveymgsising a 25M words corpus
downloaded from the Web, the system was able to identifyridgh ‘J’ as possible
verbalizations of((name first),'John’). With a little more effort, | would expect
the system to identify ‘Dick’ as a verbalization fofname first),‘Richard’). Now,
it would be definitely impossible to pick up a verbalizatioh'®irot’ for the concept
((name | ast ), ‘Ipeirotis’). However, humans will have no problem telling that (maybe
not proposing ‘Pirot’ as a verbalization of ‘Ipeirotis’ irbstract, but identifying in a
given text that ‘Pirot’ refers to the last name ‘Ipeirotis’centext makes a big difference,
usually). However, there is no human intervention durirgnttatched textonstruction
(again, it is unsupervised). Therefore, it needs a largebaurof textual examples and
even in that case there will be cases that cannot be captNo#d.that this is a problem
with the model. The model, however, can be improved to accodat® new casés.
More research is needed to propose new models and enridimgximes. Mine is a
simple model to help bootstrap the exploration process.

The matched textonstruction works on the hypothesis that changes in thee dat
are correlated with changes in the text. There are timeghbathange in data affects the
text, while not appearing explicitly. For example, on workrevision-based generation
(Robin and McKeown, 1993), it was the case that informatiat thd not appeared in
the text was affecting lexical choice: stodggewhen they start raising in the morning
but theyraise if they do it in the middle of the day, although the actual tidees not
appear mentioned in the tektTherefore, keeping these concepts for further processing
is of use for a NLG pipeline; as the example show, the dataeletted for inclusion has
a role in lexicalization. In any case, the overgeneratioplies that the statistical rules

2For example, expanding the model with the assumption tmgtsabsequence of at least 5 letters is a
possible verbalization’ will accommodate the ‘Pirot’ exalm
3Personal communication.
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will be prone to have low precision.

8.3 Limitations of the learning of Content Selection rules

Inducing Content Selection logic from a Text-Knowledge cmrpvill capture paradig-
matic, schema-like information that has to be included @xtéxt. Capturing this paradig-
matic information has been the objective of my work. Howelteis clear that not all
the information that makes up a text can be obtained this Wiagraphies, for example,
will usually contain mentions to out-of-the-ordinary fa@bout a person that are worth
being reported. Take again tMTV Movie Awardsliscussed in Chapter 4 as omitted in
celebrities biographies. Now, if a person had wonNte/ Movie Awardgvery year for
the last ten years, such fact will be included in the biogyaplchniques that operate ex-
clusively on the knowledge side (being able to infer whiatt$aare out-of-the-ordinary)
(Knott et al., 1997) or exclusively on the text side (lookfieg sentences in biographies
with special markers or novelty words) (Schiffman, 2002) kae of use to approach this
problem.

At a finer level of detail, my Content Selection mining techugg would profit
from additional domain knowledge. In an effort to make thkion as domain inde-
pendent as possible, the system lacks any type of ontologicamation. Relatively
mild generalizations such dsntertainers” should include TONY awaradshile “writ-
ers” should include Writer's Guild of America awardsll be impossible to be achieved.
This is the case, as “entertainers” is split into “actorgfrhedians,” etc. and writers is
split into “writers,” “screen-writers,” etc. This lack ohtological information obviously
hampers the generalization power of my technique.

8.4 Limitations of the learning of Document Structuring
schemata

With respect to the learning of Document Structuring schtamay work in this area
speaks the complexity of the task and contributes sucdessiults for simpler domains
and preliminary results for complex domains. | can put fohe following reasons
behind some of the negative results in the previous chapter:

¢ Uninformed operators. While the schema-learning process aslata-driven fit-
ness function, the changes in each schema are performeddaima Using the
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training material to guide the mutation and cross-over ajpes may prove, there-
fore, fruitful.

e Efficiency issues. As a result of the aforementioned unméat operators and its
combinatorial nature, the schema-learning problem seetrectable with current
computing technology. This is no surprise, given the comtonal nature of the
problem. Further advances in computational power may britlg gap to achieve
this goal.

e Problems with focus decoding. Applying a FSM-learner lik&LGo the problem
of learning a FSM “hidden” behind a focus decoder, witholavaing the system to
adjust the decoding process at any point seemed too muchaohbitious goal, in
retrospective. The decoding process should be laid out@amradlism that allows
for it to be learned simultaneously with the FSM.

I would like to point out now two intrinsic limitations of thapproach. The first
limitation is the use of Document Structuring schemata,nimggthat my system inherits
schemata limitations, well studied and documented in teegliure. Second, as explained
in Chapter 5, my learning system requires as part of its ifpgicommunicative predi-
cates for the domain. | will discuss some of the ramificatiofhis requirement in this
section.

Limitations of Using Document Structuring Schemata. Schemata have a number of
well studied and well understood limitations that my workenits by using them as a
learning representation. The first issue that is normabpeasted with schemata is their
lack of intentional structure; no effort is made to model @present in the schema the
reasons behind the text structure (e.g., the existence @tiaidn or a sequence). This is
the case, as schemata represent texts that are rich in D@oaimunicative Knowledge
(DCK, discussed in the Chapter 2, Section 2.2), where there i®al reason behind
the text structure. The lack of intentional structure, hesveimplies that the generation
system will not be able to reason about the text it has pratiudéis is particularly
important for dialog systems that may need to answer follpwwestions or justify their
answers. My technique, therefore, will be hard pressed tappdied directly to dialog
systems. Nevertheless, in dialog systems the problemsféeeedt and current work is
normally concerned with learning Dialog Managers, as welBantence Planners that
produce a more concise output, as discussed in the Chaptectiyrs2.4.

Finally, schemata only capture long distance rhetorickitiens by means of
schema recursion. As | have not addressed the problem oiingaseveral, recursively
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related schemata, my system is further limited to localaheal structure (specified by
the communicative predicates).

In spite of these problems, my decision to use Document titting schemata is
well motivated. Schemata have been shown as highly apjdieatdal have been used in a
number of NLG projects and domains (Paris, 1987; Mayburg§8i8ateman and Teich,
1995; Dalal et al., 1996; Milosavljevic, 1999). From a stignstandpoint, it is a more
sensible solution to learn a well established represemtatian to learn a representation
easy to learn (and then investigate what type of tasks dogsdpresentation can be
useful for (Filatova and Hatzivassiloglou, 2003; Barzilaydd ee, 2004)). Researchers
in NLG have been studying the Strategic Generation probtamalimost 30 years now.
Coming up with a new solution to this problem is a valuable gbat does not require
learning and, more to the point, is not the focus of this dtasien.

Predicates Requirement. Strategic Generation involves a good deal of knowledge en-
gineering that my dissertation seeks to alleviate. At fiights it is not clear to which
degree my system is really taking the burden from the knogdeshgineer. It may be
argued that greater efforts in knowledge engineering ayeired to build the ontology
and to identify the communicative predicates in the domaiawever, this is very dif-
ficult to quantify, as both process are normally intertwinEgten in projects in which |
have been involved it is difficult to tell predicate constrac from building the actual
schema. The impact of my technique in the knowledge engmgerocess performed
by NLG practitioners is still to be seen, in some sense.

I would like to discuss two valid points, however. First, ugng the predicates
to come from outside the schema induction process is a dembision. These pred-
icates encapsulate the symbolic information used by thaireng components of the
generation pipeline. Without this solution, my schemathimipose on the NLG practi-
tioner particular solutions to other components in the NL@e[ine. Moreover, learned
predicates may impose the need for a fully statistical NL@e[e, with the obvious
impact on the text quality and lack of maintainability. Andad benefit of my approach
is that these predicates can be reused when generatingntéike same domain (e.qg.,
when generating admission notes and surgery reports in@talhs The schemata, on
the other hand, cannot be reused, as it is a major source of BKmakes sense to
learn them from examples.

The final point has to do with the fact that automatically iheag Strategic Gen-
eration logic not only improves our existing practices Habanables new exciting pos-
sibilities. PRROGENIE, for example, can be re-trained for Content Selection of taeget
biographies by its final users. This type of flexibility is ees in earlier NLG systems.
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8.5 Conclusions

Strategic Generation is a well-studied and complex prohbleMLG, as the literature
reviewed in Chapter 2 attests. Learning Strategic Generddigic from positive data
adds further complexities to it. My techniques enjoy a reéasuccess but have a num-
ber of limitations. More research is needed to overcome ttsme of which will be
introduced in the next chapter as further work.
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Chapter 9

Conclusions

| have presented in this thesis a technique to l&trategic Generation logic in the
form of Content Selection rules and Document Structuringswta. Strategic Genera-
tion is a key step in the generation of multi-sententialtimuéragraph text. In the words
of Bontcheva and Wilks (2004) “The main effort in porting a geator to a new domain
is in the adaptation of its discourse planning componens.difficulty lies in the large
number of possible orderings and the domain informatiornied¢o solve it.

My learning technique is based dmdirect Supervised Learning, a two-stage
learning pipeline that combines unsupervised and suphiesarning. The unsupervised
step uses human texts to supplant an otherwise laboriowsatimm. The obtained train-
ing material is quite noisy and therefore the supervisethleg techniques have to be
robust enough to learn in spite of this noise. As a robusniagrmethodology, | use
optimization of objective functions over the training nrédé

Experiments intwo different domains for Document Structuring schemata and
in four different styles for Content Selection rules help understand and validate the
approach. My Content Selection results are of major prdatigaortance and are ready
to be tested in other domains. The Document Structuringrerpats show promising
results and point the research to future areas that nedwefudevelopment (like corpus-
based search operators in the schemata space and the neathtiotus together with
the schema structure). These techniques can be applied/tdaseriptive domains with
no strong intentional nor rhetorical structure. Their ®sscdepends on a strong topical
structure, together with good anchors between the knowlédge and the text. These
requisites are accomplished by a broad range of domainsaofigal importance.

| will detail now the contributions of this dissertationclnding its deliverables. |
will then highlight a few of the many extensions opened bygtesent work. A prelimi-
nary list of other domains appropriate for this thesis’ taghes concludes this chapter.
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9.1 Contributions

This thesis puts forward a number of contributions. Its ne&intribution is the learning
machinery to induce Strategic Generation logic from a Haxbwledge corpus. This
machinery contributes to the knowledge engineering aspafcthe NLG process, as
well as shedding light on the learning issues of the problempfrically addressing
guestions such dgan the Strategic Generation logic be automatically aagd?” or,
more interestingly;can it be learned from indirectpositiveevidence?).

It contributes at three levels. First, it contributes byidieg, implementing and
testing a system for the automatic construction of traimragerial for learning Content
Selection and Document Structuring logic. The techniqsedieed in Chapter 3 is able
to process hundreds of text and knowledge pairs and produte@delection training
material with quality as high as 74% precision and 67% recliie Document Struc-
turing material it produces is also highly correlated to damnotated material. This
matched textsonstruction process emphasizes the use of structuredédgevas a re-
placement for manual tagging. The possibilities for aggtlan of such automatically
tagged texts are by no means exhausted in this dissertattbagen new lines of excit-
ing research. The Text-Knowledge corpus in the biograpthiesain assembled as part
of this thesis (Chapter 7, Section 7.1) is now a valuable mesowavailable for further
research in the area, together with the machinery to obtmw training material in a
number of domains discussed in Chapter 9. Resources fortgamNLG that include
semantic counterparts are scarce and of small size. Inriterduform, the ROGENIE
corpus is rivaled only by Reiter et al. marine forecast col@sgpada and Reiter, 2003),
where the semantic input is a table with a dozen values antextés a few sentences
long (his team has collected thousands of these reportsd. PROGENIE corpus has
hundreds of facts per person and multi-paragraph lengthréohies. The evaluation
methodology employed in this thesis is also a contributiosing a number of human
written texts for evaluation, dividing them into trainingdatest set and using the test set
to evaluatéboth the unsupervised as well as the supervised steps.

Second, there are also among my contributions the proposiastady of tech-
niques to learn Content Selection logic from a training makeonsisting of structured
knowledge and selection labels. As the training materi@utomatically obtained, it
contains a high degree of noise. Here | contribute with tephes that are robust enough
to learn in spite of this noise. | set the problem as an optation of theF* over the
training material. My techniques have elucidated Contetecdien rules in four differ-
ent styles in the biographies domain. Moreover, my exparts@ Content Selection
contribute to our understanding of the Content Selectiompim=non at several levels.
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First, it separates nicely the need for off-line (high-Ig¥&ontent Selection from on-line
Content Selection, where the approach described in thisstbas potentially learn Con-
tent Selection logic aboth levels. From a broader perspective, my acquired Content
Selection rules provide an empirical metric foterestingnessf given facts. This met-
ric (induced from a Text-Knowledge corpus) can be comparauhtology-based metrics
(Basu et al., 2001) or summarization based ones (Van Halserédeufel, 2003).

Finally, | defined the problem of learning Document Struictgrschemata from
indirect observations, proposing, implementing and eatalg two different, yet similar
techniques in two different domains. The Document Strucguproblem is one of the
most complex problems in NLG. My techniques are among thedifsrts to effectively
learn Document Structuring solutions automatically. Atreefgrain of detail, my main
contribution is a dynamic-programming metric, presente€hapter 5, Section 5.4.2,
that compares sequences of values (that can be read outdrthagainst sequences of
messages (that are produced by the schemata). This appsosichilar to my earlier
work in comparing fully verbalized text, which allows tedd-text generation logic to
be incorporated into NLG systems (described in Chapter 63.rldw method presented
here, on the other hand, is far more efficient. The acquirbérsata are written in a
declarative formalism, another contribution of this tised?Previous implementations of
schemata had mixed declarative/procedural definitiortgrti@ose a high burden for any
learning technique. Moreover, the learned schemata ady teabe plug into an open
source package, OpenSchehthat | have written as part of this thesis. OpenSchema
works as a reference implementation, allowing people toyetije full advantages of
schemata-based document structuring without worryingialte implementation has-
sles. It is my hope that OpenSchema will reduce the use onszhi&e planners on
behalf of full-fledged schemata ones.

Aside from my main contributions, my work contributes to theader linguistics
community as a new technique to analyze discourse in p&atidomains. My induced
Document Structuring schemata can be of service to lingaisalyzing the discourse of
particular domains. In some sense, they could behave, fonpbe as Text Grammars
(Zock, 1986).

9.1.1 Deliverables

Part of the contributions of this thesis are the followingj\aables:

1. Matched textonstruction programs.

htt p: // openschena. sf. net/.
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2. Content Selection rule-induction programs.

3. Document Structuring schemata induction programs.
4. Biographies Text-Knowledge corpus.

5. OpenSchema reference implementation.

6. PROGENIE generator.

9.2 Possible Extensions

| describe here some further issues worth investigatinglation to the topic of this
dissertation.

Complex Concepts and Phrases. While | have reported my tri-partite rules as expres-
sive enough to capture the needs of my biographies corpeg;léar that other domains
may need a more expressive rule language. The expressiviheaule language is
deeply tied to the expressive power of the concepts and @hir&sirther investigation of
patterns instead af-grams for the definition of phrases opens exciting new raétiares.
Finally, the impact of the equivalence classes used to d#imeata-classes is an issue
worth further investigation.

Learning jointly Information Extraction and Strategic Gener ation. While this dis-
sertation explored exclusively learning Strategic Geti@ndrom a Text-Knowledge cor-
pus, settings as the graphical model presented in Chapter dsaally addressed using
the Expectation-Maximization (EM) algorithm (Dempsteaiid, and Rubin, 1977). In
this context, using EM will imply adjusting an InformatiorxtEaction model together
with a Strategic Generation model.

Learning jointly Schemata and Focus. Following the discussion in the previous chap-
ter, learning a bottom-up focus function may help overcdmesthemata induction prob-
lems observed in the more complex domain (biographies).

Summarization. Possible extensions for summarization involve learningege la-
bels for Content Selection, in the form of salience scoresshipe the Content Selec-
tion task into a summarization framework, the labels shiwéldearned not now from a
Text-Knowledge corpus with only a single text adhering tme@articular style paired
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against the knowledge, but many different texts, all beiloggo the same domain (i.e.,
all biographies of the person, but written by different aus).

Aggregation and Content Planning. Content Planning and Aggregation interact in
complicated ways (Bontcheva and Wilks, 2001). Shaw (20Gh¥sis started pointing
out some of the issues, | would be interesting to follow ug lime@ of research. In par-
ticular, his work on manual deaggregation is worth autongatfollowing existing work

in text simplification (Siddharthan, 2003)), if possible,improve the overall behavior
of my learning pipeline.

Intentions. | would like to start investigating techniques to identifgimions (Pang,
Lee, and Vaithyanathan, 2002; Turney, 2002) and incorpdhem into my framework.
While intention is different from opinion, a text containiagarge number of sentences
with a negative opinion about a topic could be consideredaasng the intention of
lowering the value of the topic in the hearer's mind. Sintjlaa text with plenty of
positive opinions could target increasing the value of thigd. These are very simple
intentions (compared to the treatment of intentions madklbgre and Paris (1993) or
Zukerman, Korb, and McConarchy (1996)), but such model carsbd to learn Content
Selection rules that should be used when the system wargs&rate positive or negative
texts, depending on the task at hand.

Different Media. | am interested in the relations between my learning of setem
and speech act detection (Ries, 1999; Porayska-Pomstasiehd Pain, 2000) and
techniques to acquire dialog managers (Levin and Pierad&f7; Singh et al., 2002). It
would be also interesting to relate my research to work inddyplanning using rhetorical
operators, as the work done by Kamps et al. (2001). On thatlhélmave access to the
MAGIC system, a multimedia system of coordinated speechyaaphics.

9.3 Other Possible Domains

| would like to conclude with a description of additional daims suitable for the applica-
tion of my technique. Each domain provides input to my systetine form of an aligned
Text-Knowledge corpus. All these domains are of desceatiature and abundant in an-
chors (phrases copied verbatim from the input knowledge)bdfhese new domains are
to added to the two domains used in this thesis (Section dabyely Medical Reports
and Person Descriptions. | mention these extra domainspgmoding evidence of the
broad applicability of my technique.
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Input Knowledge Human-written Text
Towards the end of the archaic period,

coins were used for transactions. This

use- coi ns(archai c- peri od)

2 creation-period(ex5, archai c-peri od) particular coin, which comes from that
5 mamlecs statery) period, is a silver stater from Crotoa,

o e et o P er ot on) Greek Colony in South Italy. On both

o eanont-demert ot e eay PO the obverse and the reverse side there is
To. inrent s a0 2 0be) atripod (vessel standing on three legs),

Apollo’s sacred symbol. Dates from
between 530-510.

Figure 9.1: Example of museum training data, from KaramangManurung (2002).

9.3.1 Museum Exhibit Descriptions: M-PIRO

A suitable domain for the application of my technique is tiwoanatic generation of
exhibit descriptions (e.g., short descriptions of archagioal artefacts), for virtual mu-
seums. There is considerable work done along these linegropE and Australia, par-
ticularly in Edinburgh, as part of the M-PIRO and ILEX prdig¢Cox, O’Donnell, and
Oberlander, 1999; Androutsopoulos et al., 2001). See Ei§ut for an example. An
exciting possibility for this domain is to provide a meansomparison with recent ex-
periments of statistical methods applied to content plagnim generation (Mellish et al.,
1998; Karamanis and Manurung, 2002).

Knowledge database tuples about different museum pieces.
Text description of pieces written by a domain expert.

9.3.2 Biology: KNIGHT

The focus of this domain is the generation of definitions ofdmical processes and en-
tities. It deals with structured knowledge in biologicahaain and uses a broad coverage
knowledge base of biological facts built independentlyrfroonstruction of the gener-
ator (ensuring separation of input representation andrgéogr structures). During the
evaluation of the system reported by Lester and Porter (198@logy experts where
asked to write biology definitions. They were later evaldagainst the computer pro-
duced ones. It would be feasible to employ such aligned Kexiwledge corpus as input
for my learning machinery. An example is show in Figure 9.2.

Knowledge a large database of biology facts.
Text definitions of different biological processes and entities
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9.3.3 Geographic Information Systems: Country Descriptions

Description of countries or other geographical items i® @deasible domain for my
approach. From semi-structured repositories of geogecapformation such as the CIA
fact-book (Figure 9.3 (a)) a knowledge base can be mineder@rit textual representa-
tions can be found for different audiences or needs. Sead-B3 (b) for one possible
description.

Knowledge tabular data from geographical/intelligence sources.
Text country descriptions, fitting different needs.

9.3.4 Financial Market: Stock Reports

Financial news provide an important source of text and tataéta. This rich resource

has been employed in the past, e.g., the work done by Kuk@83)lin generating lead-
ing paragraphs of the WSJ and by Smadja and McKeown (1990}iactxg and repre-

senting collocations for NLG.

Knowledge tabular data regarding stock trading informatian.
Text professional descriptions of the data.

9.3.5 Role Playing Games: Character Descriptions

While publicly available sources constitute a good starntiagnt for building person de-
scriptions (i.e., biographies), some of the informatiomgeised by biographers requires
subjective judgements or information highly inferentrahiature. My biography genera-
tor is able to perform its task because it can mine text sigdpem existing biographies.
On the other hand, it would be interesting to produce persstriptions from com-
pletely tabular data. A good scenario to achieve this gaggieeration associated to Role
Playing Games, where a particular character is specifieddansiof numeric attributes
such as BEXTERITY or DODGE-SKILLS. An example is shown in Figure 9.4.
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Expert written. The seven celled (eight nuclei) female gametophyte of
angiosperms (flowering plants). The embryo sac consist®gf
cell surrounded by two companion cells, 3 antipodal celisl

large central cell which contains 2 polar nuclei. The emls®o
is found inside the ovule of the sporophyte (diploid plant).

yte.

Figure 9.2: Example of training data in a biology domain.Ea&pert written description

(b) Generated description (c) Input knowledge. (Adaptethft.ester and Porter (1997).)
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Location Southern South America, bordering the South Atlantic Ocean, between
and Uruguay

Map references South America

Area total area: 2,766,890 sg km
land area: 2,736,690 sq km

km, Paraguay 1,880 km, Uruguay 579 km
Coastline: 4,989 km
Maritime claims: contiguous zone: 24 nm
Climate: mostly temperate; arid in southeast; subantarctic in southwest

Terrain: rich plains of the Pampas in northern half, flat to rolling platea
Patagonia in south, rugged Andes along western border

Natural resources: fertile plains of the pampas, lead, zinc, tin, copper, iron
manganese, petroleum, uranium

Land use: arable land: 9%
permanent crops: 4%
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Chile

Land boundaries: total 9,665 km, Bolivia 832 km, Brazil 1,224 km, Chile 5,150

ore,

(a) Example entry from the World Fact-book (excerpt).

Ocean, Chile (west) and Uruguay (east). It covers an area almostttmth
the southeast and subantarctic in the southwest. The country’s terraistsoo

plateau of Patagonia in the south, and rugged Andes Mountains alongstes
border. Some natural resources prevalent in Argentina include leadone,
copper, manganese, and petroleum.

but English, Italian, German, and French are often spoken as well. Btyntbe

other non-white groups. The religious breakdown of the country is s
Roman Catholic (90%-less than 20% practicing), Protestant (2%), Je2fis))
and other (6%).

Government The country is officially known as the Argentine Republic. Its capi
Buenos Aires, is located on Argentina’s eastern coast near Urudirggnting
has both a president and vice president elected by popular vote . ..

(b) Country description, from http://ww. el ca. org/ dgn -
country_packet/ packets/| ati n_anmeri ca-cari bbean/ argenti na/ -
desc. htm

Figure 9.3: Example of Country Data and Description.

People More than 36,000,000 people live in Argentina. Spanish is the official Egeu

Physical Argentina is located in Southern South America, bordering the South Atlantic
the size of the US. Argentina has a mostly temperate climate which is arid in

the rich plains of the Pampas in the northern half of the country, a flat to rolling

e

country is 85% white with the remaining 15% being mestizo, Amerindian, or

(

tal,
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(a) Character Page

Mitzo Rotis is a prodigious professor. Born in Boston, MA
young as 25 year-old, he is already an acclaimed anthro
gist, well know by his persuasive speeches and psycholqg
set ups. A weak, average sized person, a fire accident
on his life marked his physical appearance and his psych
is afraid of fire in all its forms). This is not a problem f
the psychoanalytic Dr. Rotis, that is still able to charm

audience with his never ending conversation and most v.
knowledge, ranging from Physics to Greek.

(b) Character Description

as

polo-

gica
early
e (he
or

any
aried

Figure 9.4: Role-playing games domain example
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Appendix A

Additional Tables

Following Mitchell (1997), pages 146-147, to compute wieethe differences observed
between two machine learning methods are statisticallgifgignt, it is necessary to
compute their mean and an estimator for their standard tiewid will use a three-fold
cross-validation to compute these differences. Therefgiven three foldgTry, Tey),
(Tra, Te), (Tra, Tes) and two system variantsa, #g, each variant is trained i r, +
Te), (Tro+Te), (Tr3+Tes) and tested iMe, Tey, Tes:

& = EjM-E°
5 = EA-E)®
5% = EJA—EJ®

Then we compute the average, defined as

. k
X

S5 = L S(5-67
o k(k—l)i;(d_)

The true difference in the two variants lies in the interval

5_i tn2S5

wheregis the mean of the differences aﬁgi is an estimator for the standard deviation
defined above ant3 y depends on the confidence intervialPf), and it is given by the
following table:
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Table A.1: Experiments ibi ogr aphy. com

Variant H Partition 1 H Partition 2 H Partition 3
size=439 size=410 size=280
0 86| 48 76 | 45 57| 29
(Pathygt 30 _275 15 _274 32 _162
Trivialgicy) error=0.17 || error=0.14 || error=0.21
1 100| 34 90| 31 60| 26
(Pathygt 49_ 256 39 _250 41 _153
on-lineyicy) error=0.18 || error=0.17 || error=0.23
2 94| 37 79| 37 56| 31
(Scorguq+ 41 _267 21 _273 27 _166
Off-lineyicy) error=0.17 || error=0.14 || error=0.20
3 88| 43 69| 47 56| 31
(Scorauq+ 29 _279 15 _279 25 _168
Externakic) error=0.16 || error=0.15 || error=0.2
4 94| 37 79| 37 59| 28
(Scorggq+ 40| 268 21| 273 27| 166
Externakict+ error=0.17 || error=0.14 || error=0.19
Off-lineyict)

| N= || 90% | 95% | 98% | 99% |
| t= || 2.92] 4.30] 6.96] 9.92]

In the following tables, | will consider the difference b&®@n two variants to be
statistically significant if the interval ove¥ described above does not includes the zero.
Please note these differences are over error rates andsithésis | have focused in
differences on F-measure. | am using these differencese lefht about whether the
different variants are performing in a way that can be duelguo chance or not.

Matched Text Construction

bi ogr aphy. comcorpus. Table A.1.

Baseline stat. signif. different from Variant 4, conf.: 7386
Baseline stat. signif. different from Variant 3, conf.. 6664
Baseline stat. signif. different from Variant 2, conf.: 7823
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Table A.2: Experiments is9. com

Variant H Partition 1 H Partition 2 H Partition 3
size=509 || size=1031| size=515
0 33| 27 29| 27 33| 28
(Pathygt 11 _438 78 _897 3 _451
Trivialgicy) error=0.07 || error=0.10 || error=0.06
2 35| 26 27| 25 30| 27
(Scorguq+ 10 _438 76 _903 10 _448
Off-lineyicy) error=0.07 || error=0.09 || error=0.07
3 36| 25 26| 26 30| 27
(Scorauq+ 11 _437 73 _906 5 _453
Externalicy) error=0.07 || error=0.09 | error=0.06
4 39| 22 27| 25 30| 27
(Scorggq+ 12 | 436 76 | 903 9 | 449
Externakict+ error=0.06 || error=0.09 || error=0.06
Off-linegict)

Variant 2 stat. signif. different from Variant 4, conf.:
Variant 1 stat. signif. different from Baseline, conf.:
Variant 1 stat. signif. different from Variant 4, conf.:
Variant 1 stat. signif. different from Variant 3, conf.:
Variant 1 stat. signif. different from Variant 2, conf.:

variant4-variant3, no conclusion could be arrived.
variant3-variant2, no conclusion could be arrived.

s9. comcorpus. Table A.2.

Baseline stat. signif. different from Variant 3, conf.:
Variant 2 stat. signif. different from Variant 4, conf.:
Variant 2 stat. signif. different from Variant 3, conf.:

baseline-variant4, no conclusion could be arrived.
baseline-variant2, no conclusion could be arrived.
variant4-variant3, no conclusion could be arrived.

@280
96.%9
93.142
96.605
92.958

137
628
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Table A.3: Experiments inndb. com

Variant H Partition 1 H Partition 2 H Partition 3
Size=685 size=519 size=378
0 91| 73 62| 59 56| 54
(Pathygt 43 _478 25 _373 16 _252
Trivialgicy) error=0.16 || error=0.16 || error=0.18
2 80| 73 60| 51 55| 50
(Scorguq+ 41 _491 33 _375 19 _254
Off-lineyicy) error=0.16 || error=0.16 || error=0.18
3 82| 71 60| 51 52| 53
(Scorauq+ 43 _489 30 _378 20 _253
Externakic) error=0.16 || error=0.15 || error=0.19
4 82| 71 65| 46 54| 51
(Scorggq+ 41| 491 29| 379 20| 253
Externakict+ error=0.16 || error=0.14 || error=0.18
Off-linegict)

i mdb. comcorpus. Table A.3.

Baseline stat. signif. different from Variant 4, conf.:
Baseline stat. signif. different from Variant 2, conf.:
Variant 3 stat. signif. different from Variant 4, conf.:

baseline-variant3, no conclusion could be arrived.
variant4-variant2, no conclusion could be arrived.
variant3-variant2, no conclusion could be arrived.

w ki pedi a. or g corpus. Table A.4.

Variant 3 stat. signif. different from Baseline, conf.:
Variant 2 stat. signif. different from Baseline, conf.:
Variant 2 stat. signif. different from Variant 4, conf.:
Variant 2 stat. signif. different from Variant 3, conf.:

baseline-variant4, no conclusion could be arrived.
variant4-variant3, no conclusion could be arrived.

6347

837

92.%9
857
91.401
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Table A.4: Experiments ini ki pedi a. org.

Variant H Partition 1 H Partition 2 H Partition 3
size=2110| size=2048| size=916
0 122| 107| 93| 124 80| 99
(Pathygt 63_ 1818 47 _1784 29 _708
Trivialgicy) error=0.08 || error=0.08 || error=0.13
2 111| 102| 84| 124 86| 91
(Scorguq+ 83_ 1814 61 _1779 39 _700
Off-lineyicr) error=0.08 || error=0.09 || error=0.14
3 113| 100/ 89| 119 92| 85
(Scorauq+ 77_ 1820| 52 _1788 43 _696
Externalicy) error=0.08 || error=0.08 || error=0.13
4 120 93|l 88| 120 93| 84
(Scorggq+ 81| 1816] 63| 1777 | 39| 700
Externakict+ error=0.08 || error=0.08 || error=0.13
Off-lineyict)

Learning Content Selection Rules

bi ogr aphy. comcorpus. Table A.5.

Variant 4 stat. signif. different from Baseline, conf.: 96.£21

Variant 4 stat. signif. different frorBELECT-ALL/SELECT-NONE, conf.: 89.501
SELECT-ALL/SELECT-NONE stat. signif. different from Baseline, conf.: 89.539

s9. comcorpus. Table A.6.

Baseline stat. signif. different frolBeLECT-ALL/SELECT-NONE, conf.: 77.382
Variant 4 stat. signif. different from Baseline, conf.: 95.%8

Variant 4 stat. signif. different frorBELECT-ALL/SELECT-NONE, conf.: 80.741

i mdb. comcorpus. Table A.7.
Variant 4 stat. signif. different from Baseline, conf.: 7536
Variant 4 stat. signif. different fror8ELEcT-ALL/SELECT-NONE, conf.: 64.636



Table A.5: Experiments ibi ogr aphy. com

Variant H Partition 1 H Partition 2 H Partition 3
size=439 size=410 size=280
0 76| 55 64| 52 57| 30
(Pathyqq+ 46 _262 50 _244 32 _161
Trivialgicy) error=0.23 | error=0.24 || error=0.22
4 98| 33 78| 38 60| 27
(SELECT-ALL / 73 _235 83 _211 43 _150
SELECT-NONE) error=0.24 || error=0.29 || error=0.25
4 110 21 | 102| 14| 78| 9
(Scorggq+ 108|200 | 117|177 | 87| 106
Externaljct+ error=0.29 || error=0.31 || error=0.34
Off-linegyict)
Table A.6: Experiments is9. com
Variant H Partition 1 H Partition 2 H Partition 3
size=509 size=1031| size=515
0 28| 33 26| 26 26| 31
(Pathugq+ 16 _432 112_ 867 16 _442
Trivialgicr) error=0.09 || error=0.13 || error=0.09
4 28| 33 26| 26 27| 30
(SELECT-ALL / 11 _437 56 _923 11 _447
SELECT-NONE) error=0.08 || error=0.07 || error=0.07
4 34| 27 30| 22 || 27] 30
(Scorgqg+ 24 | 424 123 | 856 19| 439
Externakict+ error=0.10 || error=0.14 || error=0.09

Off-linegct)
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Table A.7: Experiments inndb. com

Variant H Partition 1 H Partition 2 H Partition 3
Size=685 size=519 size=378
0 49| 104 44 | 67 33| 72

37| 495 15| 393 15| 258

(Pathyga+ _ _ _
Trivialgic) error=0.20 || error=0.15 || error=0.23
4 64| 89 51| 60 50| 55

74 | 458 32| 376 33| 240

(SELECT-ALL /
error=0.23 || error=0.17 || error=0.23

SELECT-NONE)

4 110| 43 69| 42 59| 46
(Scorggg+ 125 | 407 110 | 298 45 | 228
Externaljict+ error=0.24 | error=0.29 || error=0.24
Off-linegict)

SELECT-ALL/SELECT-NONE stat. signif. different from Baseline, conf.: 82.845

wi ki pedi a. or g corpus. Table A.8.

Variant 4 stat. signif. different from Baseline, conf.. 96.25

Variant 4 stat. signif. different from SELECT-ALL/SELECT-NONE, conf.: 95.816
SELECT-ALL/SELECT-NONE stat. signif. different from Baseline, conf.: 88.590



Table A.8: Experiments imi ki pedi a. or g.

Variant H Partition 1 H Partition 2 H Partition 3
size=2110| size=2048| size=916
0 43| 170 38| 170 34| 143
(Pathygt 7 _1890 7 _1833 6 _733
Trivialgicr) error=0.08 || error=0.08 || error=0.16
4 65| 148 65| 143 521|125
(SELECT-ALL / 43 _1854 48 _1792 41 _698
SELECT-NONE) error=0.09 || error=0.09 || error=0.18
4 o5| 118 84| 124 74| 103
(Scorgqg+ 148 | 1749| 102 | 1738 89| 650
Externaljct+ error=0.12 || error=0.11 || error=0.20
Off-linegict)
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