Using Robustness to Learn to Order Semantic Properties in Referring Expression Generation

Pablo Duboue, Martín Domínguez

Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba

Córdoba, Argentina

• Our objective is to learn an ordering of properties.

• This ordering is used within an algorithm, we are using as a metric the number of errors this algorithm makes when using each potential ordering.

• We haven't succeeded (yet) but have encouraging signals.

Our Work at a Glance (NLP)

- Natural Language Generation (NLG)
 - Multiparagraph text construction from non-linguistic data.
- Referring Expression Generation (REG)
 - Distinguishing a given entity from a set of confusors.
- REG algorithm: Incremental Algorithm
 - Needs a Property Ordering (PO).
- This work: learning PO using on errors
 - On old data, produce a ref. expression, check whether holds.
- Intuitions
 - A good referring expression should refer to stable properties
- Results
 - Robustness helps to learn ordernings
 - But popularity on DBpedia is a stronger signal

• Classic NLG problem

- Input: set of entities (with a distinguished element), set of triples pertaining to the entities.
- **Output:** a Definite Description, i.e., a set of *positive triples* and *negative triples*.
- Focus on running time efficiency and generating succint and easily understandable expressions.
- Example output

– Task: {'Eben_Moglen'(EB), 'Lawrence_Lessig'(LL), 'Linus_Torvalds'(LT)}

Referen	Incremental Algorithm	Gardent
EB	{ (EB <i>occupation</i> Software_Freedom_Law_Center) }	{ (EB <i>occupation</i> Software_Freedom_Law_Center) }
LL	{ (LL <i>birthPlace</i> United_States), (LL, <i>occupation</i> Harvard_Law_School) }	{ (LL <i>birthPlace</i> Rapid_City,_South_Dakota) }
LT	{ (LT <i>occupation</i> Software_engineer) }	{ (LT <i>nationality</i> Finnish_American) }

Incremental Algorithm (IA) – an established REG algo

• Introduced in [Dale and Reiter, 1995]

- Greedy approach, use a **default ordering**: Preference Order (PO)
- Iterates over PO and selects a type
- Adds a triple of the given type one at a time
- Removes from the confusor set C all entities ruled out by the new triple
- Triples that do not eliminate any new entity from C are ignored
- The algorithm terminates when C is empty.

Many other algorithms

- Graph
- Full Brevity
- Gardent's

Experiments With Wikinews-derived REG Tasks

• Wikinews, a news service operated as a wiki

- Entities disambiguated by interwiki links.

Former [[New Mexico]] {{w|Governor of New
Mexico|governor}} {{w|Gary Johnson}} ended his
campaign for the {{w|Republican Party (United
States)|Republican Party}}

• Human-written Property Ordering [Pacheco et al., 2012]:

TYPE ORDERINOFFICE NATIONALITY COUNTRY PROFESSION BIRTHPLACE LEADERNAME⁻¹ KEYPERSON⁻¹ AUTHOR⁻¹ COMMANDER⁻¹ OCCUPATION KNOWN-FOR INSTRUMENT SUCCESSOR MONARCH SUCCESSOR⁻¹ PRIMEMINISTER⁻¹ ACTIVEYEARSENDDATE PARTY DEATHDATE DEATHPLACE CHILD ALMAMATER AC-TIVEYEARSSTARTDATE RELIGION SPOUSE PRESIDENT⁻¹ NOTABLECOMMANDER⁻¹ VICEPRESIDENT PRESIDENT PRIMEMINISTER AWARD MILITARYRANK CHILD⁻¹ MILITARYCOMMAND SERVICESTARTYEAR OFFICE BATTLE SPOUSE⁻¹ KNOWNFOR⁻¹ PREDECESSOR FOUNDATIONPERSON⁻¹ MONARCH⁻¹ PREDECESSOR⁻¹ AC-TIVEYEARSSTARTYEAR ACTIVEYEARSENDYEAR STARRING⁻¹ LIEUTENANT PARENT GOVERNOR⁻¹ HOMEPAGE RESIDENCE APPOINTER⁻¹ ...

Experiments With Wikinews-derived REG Tasks

• Wikinews, news articles with interwiki links.

Former [[New Mexico]] {{w|Governor of New Mexico|governor}}
{{w|Gary Johnson}} ended his campaign for the {{w|Republican
Party (United States)|Republican Party}}

• Focus on people and organizations

Category	Definition	Size
People	Entity has "birth date"?	3,051 tasks
Organizations	Entity has "creation date"?	2,370 tasks

Using Change to Simulate Errors

Duboue, Dominguez, Estrella. *On the Robustness of Standalone Referring Expression Generation Algorithms Using RDF Data.* WebNLG 2016.

- Three algorithms of REG on anachronistic input.
 - On old data, produce a referring expression, check whether holds on new data.
- We found poor results with marginal differences among the algorithms.

Metrics

- Dice: $\frac{2|T \cap T'|}{|T|+|T'|}$, where *T* is the target set (always |T| = 1) and *T'* is the obtained set.
- Inclusion errors: the ref. exp. on old data added spurious referents
- Exclusion errors: the ref. exp. on old data excluded the referent

- DBpedia [Bizer et al., 2009] is an ontology curated from Wikipedia infoboxes
 - Infoboxes are the small tables containing structured information at the top of most Wikipedia pages.
 - Not to be confused with a new project targeting to provide structured information to Wikipedia, wikidata.

• Two Versions: Compared

Property	3.6	2014
Unique subjects (entities)	1,668,503	4,218,628
Unique objects (types)	250	547
Max objects per subject	6	16
Number of verbs	1,100	1,370
Number of triples	13,795,664	33,449,633

GA Details

- We define a GA to traverse the search space of all possible permutations of Preference Orders (POs), 92!.
- (1) *individuals* are arrays of 92 elements.
- (2) *fitness function*: we tested robustness and popularity.
- (3) A strategy for evolution:
 - mutation: swap between two elements randomly selected.
 - *crossover*: Let $[g_1, \ldots, g_i, \ldots, g_n]$ and $[h_1, \ldots, h_i, \ldots, h_n]$ be two individuals. Let $i, 0 \le i \le n$ then, the resulting individual is: $sub([g_1, \ldots, g_n], [h_{i+1}, \ldots, h_n]) \cdot [h_{i+1}, \ldots, h_n]$ where (·) appends arrays; sub(x, y) deletes elements in x that are in y.
 - crossover 0.8 prob. of being applied, mutation 0.08.
 - selection strategy the *tournament selection*, 7 as parameter.
 - population of 200 individuals; it evolves for 50 generations.
- We used the *ECJ* java library to implement the GA.

- Measure learned POs against the hand-written PO
 - Kendall's τ [Lebanon and Lafferty, 2002]:

$$\tau = 1 - \frac{2(\text{number of inversion})}{N(N-1)/2}$$

* too strict, moved to a metric that considers the REs being generated rather than the exact ordering

- Dice over selected properties.
 - * Seemingly very different POs produce comparable results
 - * Metric of choice (we refer to it as "target")
- Do observable variables change similarly to target?
 - Spearman's rho

• Experiment: Correlations over People

Exp/metric	length	Dice	exclusion errors	inclusion errors
Hand-written	-0.018	-0.215	0.185	0.397
Popularity	-0.226	0.232	-0.258	0.394

• Experiment: overfit fitness function

 A function that approximates the Dice for the hand-picked PO using the observable variables. Linear regression:

target = -1.608*length + 15.5279*inclusion + 0.8787*exclusion + 1.9403

- Pearson's correlation coefficient of 0.872

• Experiment: Can the GA learn?

- Experiment: Genetic Algorithm over organizations using fitness trained on peopled
 - Disappointment: after 50 generations, we get a target of only 0.435
 - When popularity PO achieves 0.93.
- This is our main negative result

• Experiment: Correlations over Organizations

- Strong Spearman's rho, but very different from people's numbers.

Exp/metric	length	Dice	exclusion errors	inclusion errors
Hand-written	0.059	0.832	-0.834	0.840
Popularity	-0.064	0.864	-0.866	0.841

• Experiment: Only length & inclusion errors

- Preliminary result, insight obtained from looking at both tables (test set)
- Trained on people, target on organizations of 0.906
- Trained on organizations, target on people of 0.608
- Below the popularity PO but more generalization strength

• Experiment: GA using only inclusion errors

- Dice of 0.272 (people) and 0.361 (organizations)
- Robustness alone is not enough, combining it with length is key.

- Main result: correlation between hand-written PO and robustness
- Lack of generalization: organizations change differently from people (hypothesis)

- 2014 course Aprendizaje Automático sobre Grandes Volúmenes de Datos
 - Slides in Spanish, under Creative Commons licence
 - Hadoop / Mahout sample code / YouTube videos
 - Three end-to-end case studies: recommendation, clustering and classification
 - http://aprendizajengrande.net
- Information Extraction for Open Data
 - Two IE pipelines, one in Apache UIMA using rules and CRFs
 - Thousands of documents in French and Spanish available for download
 - Instructional material (in English) from my ECI course
 - -http://ie4opendata.org

- DBpedia/Wikinews is a suitable source for doing research on robust REG algorithms.
- Robustness has a correlation with a hand-written PO.
- People and organizations are too different to generalize from one another
- Where to go from here:
 - Focus on sub-types of entities (sub-types of organizations or people).
 - Focus on popularity ordering.

Backup Slides

- Alusivo: an Open Source implementation of REG algorithms
 - -https://github.com/DrDub/Alusivo
 - Java, Maven, RDF-based

Interface

- public ReferringExpression resolve(URI referent, List<URI> confusors, RepositoryConnection repo)

Libraries

- Sesame (RDF)
- ChocoSolver (CSP)
- jgrapht (Graph algorithms)

References

[Bizer et al., 2009] Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., and Hellmann, S. (2009).

- [Dale and Reiter, 1995] Dale, R. and Reiter, E. (1995). Computational interpretations of the gricean maxims in the generation of referring expressions. *Cognitive Science*, 19(2):233–263.
- [Lebanon and Lafferty, 2002] Lebanon, G. and Lafferty, J. (2002). Combining rankings using conditional probability models on permutations. In Sammut, C. and A. Hoffmann, e., editors, *Proceedings of the 19th International Conference on Machine Learning*, San Francisco, CA. Morgan Kaufmann Publishers.
- [Pacheco et al., 2012] Pacheco, F., Duboue, P. A., and Domínguez, M. A. (2012). On the feasibility of open domain referring expression generation using large scale folksonomies. In *Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, NAACL HLT '12, pages 641–645, Stroudsburg, PA, USA. Association for Computational Linguistics.