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Abstract. In this work, we investigated an existing technique that ob-
tains distributed representations of hierarchical semantic networks via
symbol recirculation [6]. We are interested in symbol recirculation as
a viable method for incorporating hierarchical knowledge into exist-
ing machine learning methods. In this paper, we will discuss our re-
implementation of the symbol recirculation algorithm and analyze its
behavior, learning capacity and robustness using a real life ontology such
as WordNet.
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1 Introduction

Most of the automatic learning techniques used at present (neural nets [7], deci-
sion trees [16], hierarchical lists [24], example memorization [25], inductive rule
learning [4]) conceive the learning process as a technique to teach the machine to
associate input to output vectors. These vectors may have different representa-
tions (numbers, characters, etc.). However, the size and nature of those vectors
is fixed and, quite often, arbitrary in nature (for example, a vector of randomly
generated floating point numbers, characters, etc.).

In the case of Natural Language Processing, words are normally considered
entities with an equality operator. The only thing that can be said about words
are whether or not a pair of them are exactly the same word. We consider this
type of approach as akin to having empty words, words without any underlining
meaning.

However, incorporating knowledge about the relations among words can im-
pact positively; let us suppose, for example, that we want to learn what type
of words may be the subject of a certain verb, for instance, the verb “eat.” We



have a number of examples for training our system, in which the following words
appear as subjects of that verb, their frequency denoted between parentheses:
dog (5), cat (6), government (1), person (11), platypus (2). It is clear that
metaphoric uses of the words (such as “the government eats its words”) must
be discarded. Other examples of rather unusual words (like platypus) should be
discarded as well. However, if we know that dog, cat, person and platypus are
related because they are all subclasses of the concept ANIMAL, then we should
be able to use the training examples from the most frequent classes as evidence
for the sporadic ones.

We are interested in investigating a method to incorporate this hierarchical
information (such as dog Is-A® ANIMAL) by replacing the empty symbol, e.g.,
dog, with a vector of floating point numbers that keeps a certain relationship
with other vectors that represent semantically similar symbols. These symbols
will then each contain a distributed representation of the semantic network that
they constitute, together with their relationships.*

Therefore, it is the aim of this work to investigate a technique for obtain-
ing distributed representations of hierarchical knowledge structures by means
of symbol recirculation, as a viable method to incorporate such knowledge into
existing methodologies for automatic learning. In this paper, we will focus specif-
ically on symbol recirculation and on its capacity for learning and robustness.
We have re-implemented a symbol recirculation technique proposed by Dyer et
al. [6] and performed extensive testing with real life ontologies, complementing
their work.

We begin by giving some basic definitions and describing the recirculation
process and other methods we have used. We then focus the discussion on the
experiments that we performed, followed by our results, and the conclusions that
we were able to draw from them, together with possible further work.

1.1 Related Work

The closest method to obtain intelligent symbols is latent semantic anal-
ysis (LSA) [5], where the counts of words that co-occur in a context with a
given word are recorded as the columns of a large (and sparse) matrix. When
all words (columns) are put together, the resulting matrix decomposed via its
spectral decomposition. The most dominant n autovectors (a given parameter)
are kept as representing the semantic for each word. The idea behind LSA is that
similar words will be used in similar contexts [20]. LSA has been shown to help
learning in several situations (e.g., [12]). The success of LSA encourages us for
seeking new sub-symbolic representation via symbol recirculation. A difference
with LSA, although, is that the symbols obtained via recirculation encode an
existing ontology, instead of relying on word contexts.

3 Also called hyponym, a semantic relationship between word meanings denoting sub-
ordination.

4 This type of information receives the name of selectional preferences, and have
been showed to positively impact Word Sense Disambiguation [18].



Our use of WordNet as a semantic network is shared with uses of WordNet
to measure the semantic similarity between words [1]. This technique has
also been successful in providing semantic features for machine learning (e.g.,
[8]). However, WordNet structure is designed as a lexicographic knowledge base,
where the number of links between two concepts does not necessarily reflect a
semantic distance between them. Symbol recirculation can profit from Word-
Net to provide information-loaded symbols and then let the machine learning
machinery decide upon a problem-dependent similarity metric.

A related sub-symbolic representation proposed in the literature is to use
random vectors for each word. This approach does surprisingly help learning [13].
Symbol recirculation tries to pick this line of work, providing more meaningful
vectors.

Our final goal of incorporating hierarchical information into machine learn-
ing systems is also the goal of graph data mining (23] and inductive logic
programming (ILP) [14]. Graph data mining is a very new field that we hope
may find the sub-symbolic representations obtained via symbol recirculation of
great use. ILP is a logic programming formalism that offers an alternative, purely
symbolic, approach.

2 Methods

We may define a knowledge network or ontology as a directed graph whose
nodes, all of which belong to the set {... A4, ...}, are related by means of arrows
{. STy }

Our main goal is to make use of an existing method (recirculation, proposed
in [6]) in order to obtain intelligent representations of the concepts that con-
stitute the ontology, as opposed to the representations arbitrary in nature that
most methods have used until now. The intelligence behind the symbols is the
hierarchical information about their role in the ontology. This fact make our
codifications of the concepts aware of their underlining semantics. The represen-
tations thus obtained are expected to have a positive influence on the process of
machine learning, although we are still on the process of performing experiments
to justify that claim.

The essence of the recirculation method consists of keeping two types of
feed-forward neural networks: several STMs (Short Term Memories) and a LTM
(Long Term Memory), all of which have their input, output and hidden layers.
Each STM; acts as a short term memory for a given node A; in the ontology. That
is to say, if node A; participates in the following relationships in the semantic
net:

T1 (Az; Ap)
T2 (Az; Aq)
r3(Ai, Ar)
then we train the net STM; so that, presented with the representations of 71,

rg Or T3, it outputs the representations of nodes A,, A; and A,, respectively. In
order to achieve that, we use the technique of back-error propagation [19].



LTM acts as a long term memory and codificates the entire semantic network.
The LTM is an autoassociative neural network in which the output of the hidden
neurons compresses the inputs. The term handle will denote the pattern that is
formed in the hidden layer of the LTM when, once trained, it is presented with
a particular input. If we takes as input 4 of the LTM the weights of STM;, then
the LTM compresses each STM’s weights into a handle and memorizes those
weights implicitly in its own weight matrix. The need for compression should
be clear from the fact that the LTM receives as input the weight matrix of the
STM and produces handles in the LTM’s hidden layer, but these handles are
the output of the STM. The relationship existing between the number of nodes
in the output layer of a neural network and the total number of weights in the
network makes clear the level of compression performed by the LTM.

We also have a Distributed Symbol Memory (DSM) which stores the han-
dles. As the recirculation process takes place, the handles will change until they
converge to a final representation for each symbol. It is called distributed because
the symbols that are stored on it contain information about the entire ontology
and the role each of them plays in it.

Initially, the relationships r; are represented as a random array of 0’s and
1’s. In order to minimize interferences and accelerate the initial learning process,
linearly independent representations are chosen.

The algorithm may be summed up as follows:

1. Train each STM,; with all the input-output pairs (r;, Ay) associated with
node A.

2. Once the STM; are trained, store their weight matrices in the arrays S;.

3. Train the LTM to autoassociate the set ....S;.... Once this step is over, the
floating point vector number generated at the hidden layer for each S; is
saved in the DSM as the new handle of the node that the STM; represented.
The handles that represent isolated nodes are not modified. At this point,
if the hidden layer of the LTM is presented with the newly updated handles
in the DSM, we will be able to reconstruct the STMs with the generated
output.

4. At the end of the training process, we present the LTM with each of the S;
vectors and the activation patterns (handles) formed at the hidden layer are
stored in the DSM. These patterns will be the new representations of the
semantic net symbols.

5. Steps 1 through 4 constitute an epoch. The handles of the last two epochs are
compared and, if the sum of the squared differences is smaller than a certain
predefined value, the handles are considered to have converged, and that is
the final representation for each of the symbols in the ontology. Otherwise,
another epoch begins with the training process of the STMs and the LTM
with the new handles.

In this work, we used the semantic network WordNet [11] as our source for
ontologies. We chose it because it is quite a remarkable electronic lexical database
(98,538 English words), in which English nouns, verbs, adjectives, and adverbs



are organized into sets of synonyms (called synsets), each representing a lexi-
calized concept. Each word meaning is mapped to a conceptual node (that is, a
synset), and all the synsets are related by means of a variety of semantic relation-
ships, such as KIND-OF (hypernym/hyponym), PART-OF (meronym-holonym),
synonyms and antonym. The relationship Is-A is the one that groups synsets
into hierarchies.

Our implementation of the entire recirculation process is synthesized in Fig-

ure 1.
S(NL + N2)

Fig. 1. The recirculation process, adapted from [6].

Figure 2 depicts the full system’s implementation. We took several decisions
leading to improvements in the recirculation method:

Many to many relationships. Many to many relationships introduce difficulties
in the recirculation system. Let us take, for example, the relationship HAS-PART
(meronym). If we ask WordNet for the related concepts of the word “car,” we
obtain 52 results.

Let us suppose that we codificate the first sense of “car,” the relationship
HaAs-PART, and the 52 concepts mentioned before.When we create the STM
associated to “car,” we find that the neural network must produce 52 different
outputs (a different handle for each concept) when presented with one input (the
symbolic representation of the relationship HAs-PART).

For this reason, we decided that the algorithm for selecting ontologies should
choose, in these situations, any one of the related concepts. This way, it is made
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Fig. 2. Full scheme of the system’s implementation.

sure that the subgraph so obtained (the ontology) does not present this kind
of ambiguities. This is a preliminary solution to the problem posed by many to
many relationships.

Improvements to the back-propagation algorithm. In the spirit of increasing the
speed of convergence and avoiding undesirable oscillation, we implemented cer-
tain improvements to the back-propagation algorithm:

— Each connection weight is given a momentum rate, so that it tends to

change in the direction of the average of the “down hill” force, instead of
oscillating randomly with each small step. In this manner, the effective learn-
ing rate can be increase without divergent oscillations taking place. We chose
the parameter (o = 0.3) so that the slope of the sigmoid function would be
soft, and it does not resemble the step function.

Selecting an appropriate parameter 1 for each problem is not an easy task.
Even values that are fairly “good” at the beginning of the training process
are not as good later on. We decided to implement an adaptive control of the
parameters if the weight updates actually decrease the cost function. If it is
reduced, then 7 is augmented. Otherwise, 7 is decreased. We adopted the de
Vogl et al. [22] rule, with constant parameters ¢ > 1 and 5 < 1. Following
Reed [17]’s advice, we defined ¢ = 1.05 and 5 = 0.7

Network architecture. We choose three-layer STM and LTMs (with one input,
one hidden and one output layer each). The hidden neurons compute the ERF



functions on their input, and the outer layer has LINEAR neurons. The initial
symbols are arrays of 0’s and 1’s and, although they are modified through the
epochs, they remain in that interval.

LTM is an autoassociative neural network, with as many hidden neurons as
output neurons each STM has, and as many LINEAR output neurons as weights
for each STM.

The choice for the architecture is a consequence of a careful analysis of the
characteristics of the nets and the values they handle. The recirculation process
showed greater convergence (both quantitively and qualitatively) after the STMs
and LTM were constructed so as to reproduce the chosen scheme.

Since the initial codifications of the relationships are linearly independent,
we decided to work with as many input neurons as relationships there are in
each ontology.

Ontology extraction. We used the automatic spread activation technique [15,
3,2]. We developed an approximation to this method was created and incorpo-
rated depth first search [21] with bounded depth for the selection of ontologys
from large semantic networks, such as WordNet. For this purpose, we have used
the noun subtree and the hypernim relationship, although the algorithm may
be used in any category and with any other relationship.

3 Experiments

We performed our tests using sets of 190 words randomly selected with a uniform
distribution, according to their amount of initial meanings (size of their synsets,
in WordNet parlance). Words with only one meaning (i.e., words that do not
need to be disambiguated) were discarded. For each word, we picked ontologies
of increasing size, beginning with a size equal to twice the number of initial
senses of that word, until a maximum of 49 symbols. The lower bound allows us
to make sure that each sense of the initial (root) word has at least one concept
related to it.

We carried out a preliminary study so as to establish the optimum size for the
representations with respect to time and efficiency. Results showed that handles
consisting of 3, 4 and 5 floating point numbers were desirable.

During the process of recirculation, we measured:

Convergence error for one neural net. Each time an STM or LTM computes
its output for the training patterns, the sum of the squared differences with the
desired outputs is computed as a measure of convergence for that neural network.

Convergence error for the recirculation process. We compute the sum
of the squared differences between the handles of the last two cycles (epochs),
as a measure of the “stabilization” process of those handles. Recirculation is
considered to have converged when this value reaches a point below a certain
number that must be fixed at the beginning of the process.
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Evolution error. This error measure is computed at the end of each epoch
by collecting the generated values in the outer layers of each STM for each
relationship-output pair that constitutes its training set. The values are then
compared to the handles in the DSM. The average is considered as an indicator
of the degree of convergence of the whole process. The smaller its value, the more
consistent the representations in the DSM are, and the handle set is therefore
closer to converge.

Degenerative error. Once the recirculation process has finished, we measure
the degenerative error by constructing a chain of increasing errors that represent
the decay of the symbols that constitute the ontology and that are saved implic-
itly in the LTM. The successive differences sugest a measure of the degradation
of the patterns that are recovered through recirculation.

The mean and variance for the degenerative error are shown in Figure 3. Note
that it increases more rapidly with 3-component handles than with 5-component
handles. This may be attributed to the fact that 3 floating point numbers have
less expressive power than 5, although they have the advantage of converging
faster and converging for slightly larger ontologies. Figure 4 shows the evolution
error for 3 and 5-component handles.
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Fig. 3. Degenerative error for 3-component and 5-component handles.

The examples that did not converge allow us to conclude that the most
critical step of the whole system is the first learning process that takes place
in the LTM. If the LTM converges after the first epoch, we have an (empiric)
warranty of convergence. In successive epochs, the time taken to autoassociate
decreases considerably, which leads to the conclusion that the generalization that
takes place in the LTM is indeed a very good one. The process of recirculation
takes only a few fractions of second more than the time taken by the LTM during
the first epoch. The STMs learn functions so simple that not only they converge in



every case, but their convergence times are also minimal. For a 7T00Mhz processor
with an upper bound of 200,000 iterations of Backpropagation (before discarding
the example), the maximum convergence time is about a minute.

We attempted to perform a study on the types of large ontologies that the
system learned. We could not develop an automatic method, since we could not
find a preliminary classification of the ontologies that can be extracted from
WordNet. However, we were able to conclude that the ontologies that converge
better are “shallow”; that is to say, ontologies whose broadness is greater than
their depth (i.e., ontologies originated from words with many initial meanings).
This fact was not unexpected, since for that kind of ontology, relatively few
STMs are created, and therefore the LTM has fewer patterns to learn.

The process used in this work has showed to converge in reasonably short
times, turning it into a viable method of codification, as far as time is concerned,
for ontologies of around 20 symbols.

For each word, approximately 20 related concepts are learned, including the
initial meanings. After a small study of the maximum sizes for the ontologies
that can be extracted from WordNet, we were led to the conclusion that most of
them contain around 40 symbols. By means of recirculation we have been able
to codificate 50% of that information.

The method has the advantage of permitting the incorporation of meaning
into a symbol. That is to say, concepts need no longer be represented by random,
meaningless symbols, but rather by intelligent ones that incorporate a significant
amount of information.
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Fig. 4. Evolution error example.

The convergence issue is central to the process. The remarkable charac-
teristics of the representations that are obtained by means of recirculation are
useless if the set of handles stored in the DSM do not converge. Unfortunately,
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there is no theoretic demonstration of convergence for recirculation methods to
this day.

Another problem is that of oscillation. If the handles oscillate through the
epochs, they never stabilize into consistent patterns, and the process does not
converge. Since back-propagation is used during recirculation, any inconvenient
that arises with that algorithm (for example, local minima) also affects the per-
formance of the whole process.

A logical question arises: why do the handles converge? Let us remember
that the operation of autoassociation and compression of the weight matrices of
the SMTs in the LTM leads the hidden neurons of this last network to find an
efficient representation of the structure of each matrix. Although weight matrices
that perform similar tasks may result in very different representations, they share
the structural relationships that they code within the semantic network. It is this
shared structure that seems to be codificated in the hidden layer of the LTM,
and it is therefore that structure the one that guides the subsequent learning
process during the recirculation of symbols that represent the concepts.

4 Conclusions

In this work we have analyzed a method based on neural networks used to obtain
distributed symbols that incorporate hierarchical information about the concepts
they represent.

Using small neural networks that model short term memories, and an au-
toassociative neural network, that plays the role of a long term memory and
codificates the information of the short term memories, we generate a recircu-
lation process that involves the representations of concepts found in semantic
networks. This process ends with the incorporation of valuable information in
the symbols themselves.

We trained the neural networks, both short and long term, using the back-
propagation method, with improved adaptive parameters and momentum. The
semantic networks or ontologies were obtained from WordNet, which is a seman-
tic net publicly available. Subgraphs were obtained from this network by means
of a variation of the automatic spread activation method that we developed, and
they constituted the ontologies used in this investigation.

We evaluated the performance of the method using different parameter val-
ues, such as the size of the ontologies, the parameters and architectures of the
neural networks, and the size of the representations (handles) among others.

Although we have had serious computational limitations, the recirculation
method proved to be successful for almost all the examples (183 out of 190 for
the 3 hidden neuron case). However, we have detected that, for the architectures
used in this work, the process converges only for ontologies of up to 28 symbols.
This might be due to the simplicity of the chosen architectures, especially for
the Long Term Memory, for which we have experimented the greatest learning
difficulties. In particular, the method presented in this work, together with the
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architectures used, works best for the so called flat ontologies, whose depth is
considerably smaller than their broadness.

Our main concern with the original recirculation technique as proposed by
Dyer et al. [6] was its scalability. Even with the improvements described in
Section 2, we were not able to encode more than 30 symbols. Definitely more
research is required to encode the 50K+ symbols of WordNet. At any rate, our
working system can serve now as a test-bed for new ideas and let us continue
our research on the impact of these symbols for machine learning.

4.1 Further work

The difficulties found lead to the proposition of improvements that would be
very interesting to analyze, such as the possibility of adding random restarts or
the recirculation process when the LTM does not converge, or the incorporation
of a greater quantity of hidden layers in the autoassociative neural network. We
also want to look at ways to codificate many-to-many relationships. The effect
of using LTM networks with more layers could also be investigated, although
preliminary tests showed that the learning process turns out to be much more
complicated.

We also intend to continue our research in order to increase the codification
capacity of this method in order to be are able to obtain distributed representa-
tions for the nearly 50,000 concepts that make up WordNet or similar semantic
networks, such as Roget or OpenCYC [10]. Further research on many to many
relationships would also be very beneficial for the method.

The next step on this work is to evaluate the impact of the symbols in a
machine learning environment. We are looking at Word Sense disambiguation
[9] as a possible field to test the extracted symbols.
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